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1 Introduction 
In the article Planetary Orbitals we have seen that each astronomic body (AB) within the 

structure of a planetary system (PS) has an associated orbital, notion we remind the reader: 
The abstract object made-up from the reunion of all the invariant attributes which is 
characteristic for the motion of an AB within a PS, shall be called orbital. An orbital is 
composed of the following invariant attributes: 

 Spatial zone where the orbital motion is ranged.   
 Orbital period or its reverse – orbital frequency.  

As the Sun also is an AB of PS, even its central element, the Sun also will have an orbital, 
i.e. a spatial area (a volume) which encloses the motion (trajectory) of the Sun around the 
mass center (MC) of PS. Also, this motion will be assigned a frequency distribution (a 
spectrum), as we will see later. 

Comment 1.1: As established in Introduction to objectual philosophy, the mass center of a planetary 
system is the internal translation reference T of the system, the null rotation (revolution) point and 
application point of the resultant of all interaction forces with the planetary system external systems. For a 
closer star, or for the galactic center, the whole mass of our planetary system is concentrated in this point. 

Table 1.1 
i AB m [kg] a [UA]  q T [days]  

- Sun 1.9891030 - - - -  

1 Mercury 3.3021023 0.38709893 0.2056 6023600 87.969  

2 Venus 4.8691024 0.72333199 0.0068 408523.5 224.701  

3 Earth 6.0421024 1.00000011 0.0167 328900.5 365.256  

4 Mars 6.4191023 1.52366231 0.0934 3098710 686.980  

5 Jupiter 1.8991027 5.20336301 0.0484 1047.355 4332.589  

6 Saturn 5.6851026 9.53707032 0.0541 3498.5 10759.22  

7 Uranus 8.6831025 19.19126393 0.0472 22869 30685.4  

8 Neptune 1.0241026 30.06896348 0.0086 19314 60189  

9 Pluto 1.251022 39.48168677 0.2488 1.5912*108 90465  
 
In Table 1.1 the main attributes of AB of our planetary system structure are given, where 

m is the mass of AB, a is the major semi-axis of the orbit,   is the numerical eccentricity of 
the orbit, T is the orbital period and q will be defined below. If we note the sun mass as mS 
and planets masses as mi, (i is the index in Table 1.1 starting with 1 for Mercury1) 
then i Sq m m i

                                                

. 

 
1 The soft for mathematical modeling was Mathcad, and the convention for the indices of a vector was 
ORIGIN=1. 
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2 The motion of PS elements in relation to the MC of the planetary 
system 

Given a PS represented in Fig. 2.1, consisting of small-sized n AB (planets), with masses 
m1, m2, ...mn orbiting around a large-sized AB (Sun) with mass mS. To an external 2D (two-
dimensional) reference system with O origin and XY2 axes, the PS elements have the vectors 
of spatial position 1 2, , nr r r  and Sr . 
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Fig. 2.1 

In these conditions, the mass center (MC) of the PS has the position vector MCr given by 

the equation3: 
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If we move (shift) the O origin of the reference system in the MC, this is equivalent to 
writing in the equation 2.1 0MCr  . Denoting 1 2 n Sm m m m mT    , where mT is the total 

mass of the PS, the equation 2.1 becomes: 
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hence the position vector of the Sun to the MC: 
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We know that planets move in elliptical trajectories with MC in the focus point and ir  as 

the position vector, hence the Sun shall also move throughout the elliptical trajectories4, with 

                                                 
2 We consider the simplified case where the motions of the AB forming the PS are coplanar, included in the XY 
plane. 
3 Richard Fitzpatrick - An Introduction to Celestial Mechanics, Cambridge University Press 2012   
4 Sun trajectory is elliptical in a couple consisting of the Sun and a certain planet, but on the whole, by the 
composition of all elliptical motions, solar trajectory is more complex, as we shall see. 



MC focus point also, but with Sr  as position vector. Mathematical modeling of these motions 

(trajectories) shall be done in simplifying conditions, namely:  
1. Motion in elliptical trajectory in the XY plane is the result of the projection on the 

XY plane of a circular motion with radius ia  and constant angular velocity ( )i t , motion set 

in a plane that includes the X axis and is inclined by the i  angle in relation to XY plane. In 

these circumstances we have ia  major semi-axis of the orbit collinear with the X axis, 

cos( )i i ib a   collinear with the Y axis (minor semi-axis of the orbit), sin( )ii   and 

2
( )i

i

t t
T

   . 

2. All elliptical trajectories are included in the XY plane and have the apsides axis 
(perihelion-aphelion axis) collinear with the X axis. 

3. Starting point of trajectories calculation (t = 0) is the perihelion. 
In these circumstances ( ,i j being the unit vectors of X and respectively Y axis), the 

position vector of the Sun for a mS-mi couple will be: 
 ( ) ( ) ( )i i ir t x t i y t j   (2.5) 

where: 
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Global (resultant) position vector of the Sun will be the vector sum of all individual 
position vectors 5, i.e.: 
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or finally: 
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With the data in Table 1.1, x(t) and y(t) resulting in km. 

3 The individual contributions of planets to Sun motion 
The most important couple in our planetary system is Sun-Jupiter, both in the intensity of 

the interaction6 and in the ratio of masses (q5), which determines the largest contribution to 
the position vector of the Sun in its orbital. With the data in Table 1.1 and according to 
relations 2.9 and 2.10 (in which i=5 both initially and finally), assuming that we neglect the 
other planets, for the Sun the trajectory in Fig. 3.1 results. We note that on the X axis the 
position of the Sun in relation to MC is between 57.7844 10  km (at aphelion of Jupiter) and 

 km at Jovian perihelion. If we consider that the Sun radius is 57.0657 10 56.9599 10  km, 
then the MC of Sun-Jupiter couple is outside the Sun, at a distance between 

                                                 
5 The individual contributions of each planet in the PS. 
6 See Figure 4.1 and Table 4.1 of Planetary Orbitals, reproduced for convenience in Annex 1. 



5 57.7844 10 6.9599 10 8.245 10     4 4 km at Jovian aphelion and 5 57.0657 10 6.9599 10 1.0586 10      
km at Jovian perihelion.  

 
Fig. 3.1 - The trajectory of the Sun in relation to MC of Sun-Jupiter couple 

 
Fig. 3.2 –Variation of solar position vector module for the Sun-Jupiter couple 

2 2( ) ( ) ( )r t x t y t In fig. 3.2 the variation of position vector module of the Sun  is 

displayed during a complete revolution period of Jupiter. The time axis is graded in days. 
Using the same procedure we will find in Table 3.1 for all couples Sun-planet rmin and rmax 
positions between which the position of the Sun varies according to each couple. 

In the fourth column of Table 3.1 by adding we get rMM [km], radius of spatial range 
within which the motion of the Sun is framed, i.e., the first attribute of solar orbital: 

  (3.1) 5 5 5 580.4 7.78 10 4.3 10 1.3 10 2.35 10 2459        11.6 266.7 462.4MMr    

 61.578 10MMr    (3.2) 

This radius is reached when all the planets are aligned to aphelion. It is important to note 
that due to the motion of the Sun around the MC of our planetary system, the distance 
between the surface of the Earth and of the Sun varies over time (in addition to the annual 
variation determined by Earth orbit eccentricity) by up to  6 51.578 10 6.9599 10 8.82 105      km 
i.e. 0.59% of the UA. This may influence in the same proportion the solar constant (the 
amount of energy received from the Sun to the Earth's crust). 

Comment 3.1 Variation of the distance between Earth and Sun due to Sun’s motion on its orbital is 
extremely slow due to the fact that giant planets have the most important contribution to this variation 
(noticeable contribution), and they have very long periods of revolution (in human time scale). 
 
 



Table 3.1 
 i   Planet rmin[km] rmax[km] 

1   Mercury 7.64 11.59 
2   Venus 263.08 266.67 
3   Earth 447.24 462.44 
4   Mars 66.68 80.43 
5   Jupiter 7.0657*105 7.7844*105 

6   Saturn 3.8571*10
5
 4.2977*10

5

7   Uranus 1.1961*10
5
 1.3145*105

8   Neptune 2.3089*10
5
 2.3489*10

5

9   Pluto 1.4789*10
3
 2.4586*10

3

 
 
 
 
 
 
 
 

 

 
 

4 Analysis of Sun’s motions in its orbital  
To start with we shall analyze the solar trajectory determined by telluric planets 

(Mercury, Venus, Earth + Moon and Mars) on a temporal interval of three complete Martian 
periods (2061 days). That means that we will have in the relation 2.8: 
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In Fig. 4.1 we see the trajectory of Sun’s center caused by revolution motions of the 
telluric planets with axes graded in km, revealing very steep variations of position, and in Fig. 

4.2 the value of position vector module 2( ) ( ) ( )r t x t y t  2  in km, corresponding to the 

trajectory in Fig. 3.1, the time axis being graded in days. On the basis of the trajectory in Fig. 
4.1 and of the value of the position vector in Fig. 4.2, we will calculate the velocity and 
acceleration corresponding to these motions. 

Comment 4.1: When calculating velocity and acceleration two methods with the same final results 
can be used: 

1. Classical methods of differential calculus, i.e. ( ) ( )
d

v t r t
dt

  and ( ) ( )
d

a t v t
dt

  

2. Objectual method of calculation with finite differences (see chapter 2 of Introduction to 

Objectual Philosophy), i.e. 
( ) ( )
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
, where t (one day) is 

temporal increment in the relations 2.9 and 2.10 during the mathematical modeling. In this case, the 
concept of derivative is replaced with the density concept of the derivative distribution. Using the same 
software for mathematical modeling - Mathcad - applying the classical method, the calculation takes tens 
times longer than the calculation with finite differences. 

The graphs presented reveal an interesting observation, namely when the Sun 
position in relation to the MC passes through its minimum values, higher pronounced 
acceleration values appear. But we know that acceleration means energy input (in this 
case kinetic), energy that the Sun with all its internal structure receives from the planets 
around it (through gravitational interactions). In the case of telluric planets this energy 
is very low compared to the energy received from the giant planets (as we shall see 
below), but the scenario is repeated in these planets also, i.e. the maximum energy 
intake occurs also at times of the solar position vector minimum. 

 



 
Fig. 4.1 –Sun's trajectory determined by the telluric planets x and y in km 

 
Fig. 4.2 –Variation of the position vector module according to trajectory in Fig. 4.1 

 
Fig. 4.3 –Sun velocity in km /day corresponding to Fig. 4.2 

 
Fig. 4.4 -  Acceleration in km/day2 corresponding to velocity variation in Fig. 4.3 

 
It is now time to consider solar trajectory determined by the giant planets (Jupiter, Saturn, 

Uranus and Neptune) over a temporal interval of 180567 days (three complete cycles of the 
planet Neptune). We will have in the relation 2.8: 
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Fig. 4.5 shows how complex the sun's trajectory is due to giant planets revolutions and Fig. 
4.6 the variation of position vector module in the same situation. 

 
Fig. 4.5 –Solar trajectory due to giant planets 

 
Fig. 4.6 –Variation of the solar position vector due to giant planets [km] 

Furthermore, in Figures 4.7 and 4.8 we have solar velocity and acceleration caused by 
giant planets motions, time axis still being in days. 

 
Fig. 4.7 –Sun velocity derived from Fig. 4.6 [km / day] 



 
Fig. 4.8 –Sun acceleration [km/day2] 

The graphs presented clearly reveal that under the influence of giant planets also 
abnormally high peaks of solar acceleration appear (superposed over a quasi-sinusoidal 
variation) much higher accelerations than in the case of telluric planets. Also, these peaks 
coincide with the minimum values of solar position vector in relation to MC. To confirm the 
statements above in Fig. 4.9 and 4.10 the variations in Fig.. 4.6, 4.7 and 4.8 are shown in 
detail for the first 5000 days (13.7 years) in the interval of 180567 days (494 years). 

 
Fig. 4.9 –Detail in Fig. 4.6 and 4.7 for the first 5,000 days 

 
Fig. 4.10 – Detail in Fig. 4.8 for the first 5,000 days 

Let us now analyze the above data in terms of those set in chap. 7 of Introduction to 
Objectual Philosophy. There we saw that force ultimately means an energy flux transmitted to 
the material system (MS) over which the force is applied. The transmitted energy flux is 
distributed on the internal structure of MS (internal state variation), then the external state 
variation appear (acceleration, see Energetic Action under the same chapter 7). 

Sun’s velocity of 1 km/day means 0.012 m/s, and acceleration of 1 km/day
2
 means 

1.389*10
-7

 m/s
2
, so when the Sun has an acceleration of 2.77 km/day

2
, it means a=3.848*10

-7
 

m/s
2
. However, given that m

S
=1.989*10

30
 kg, then SF m a  , i.e.  F=7.654*10

23
 N, i.e. an 

energy flux of 7.654*10
23

 J/s. It is natural that this kinetic energy intake globally distributed 
throughout the internal structure of the Sun modify the internal solar kinetic processes 
(internal action of energy flux transmitted), processes whose externally visible effects appear 



to us as "solar activity", i.e. spots, eruptions, variations of the magnetic field and solar wind, 
etc.. We also see in Fig. 4.8 that at certain times, the acceleration peak is higher than that of 
day 3000 (e.g. on day 133750 it reaches 10.8 km/day2). 

5 Spectral analysis of solar orbital 
To determine the second attribute of solar orbital - orbital frequency - we will analyze in 

the (spectral) frequency domain the Sun’s motion around MC. The most significant parameter 
of those analyzed so far is the acceleration7 as it gives us direct information on the energy 
received by the Sun during its evolution on the orbital. Therefore, we will analyze in the 
frequency domain the values array of solar acceleration similar to that in Fig. 4.8, but with the 
contribution of telluric planets also on an interval of 217=131072 days (359 years). The 
algorithm for spectral analysis is the Fast Fourier Transform (FFT (x)) algorithm applying to 
an x vector with the number of elements of the form 2n. In our case, the x vector is a(t) in Fig. 
5.1. 

We note that in regard to Fig. 4.8 a kind of noise appeared that actually represents the 
contribution of telluric planets, where we can appreciate the size of this contribution 
compared to the contribution of giant planets. Also, out of the length of 180567 days of Fig. 
4.8, here only 131072 days are rendered for the reasons mentioned above concerning the 
requirements of FFT analysis.  

 

 
Fig. 5.1 –Solar acceleration depending on the motion of all the planets 

Fig. 5.2 shows how complex the spectral distribution of solar acceleration is, where j is 
the index of spectral component value resulting after the FFT analysis, yj being the spectral 
component module and fj its associated frequency in Hz. Out of the spectral components 
amount only few (the most obvious) were selected, and their values accompanied by brief 
comments can be seen in Table 5.1. Examining the figures presented, especially the table, we 
see that the solar orbital spectrum is similar to the spectrum of amplitude modulated signal, in 
which, besides the main frequencies, sum and difference frequencies appear. Until now, due 
to the complexity of the spectrum only a few components were analyzed, enough to start with 
for the purpose of this article, namely that to show very close link between the motion of the 
Sun in its orbital and solar activity caused by this motion. 

                                                 
7 Frequencies of the spectral components resulting from the analysis are the same even if we analyze the velocity 
or position of the Sun, only the component amplitudes and shape of the spectrum being different. 



 
Fig. 5.2 – Spectrum a(t) in Fig. 5.1 in unfiltered version  

Table 5.1 
k Frequency 

[Hz] 
Freq.*1012 

[Hz] 
Amplit. 
comp.  

rel. val.8 

T 
[days] 

T 
[years] 

Comments 

 1,923*10-10 192.3  60189 164.79 fNe 

 3.772*10-10 377.2  30685 84.012 fUr 

 1.076*10-9 1075.7  10759 29.457 fSa 

1 1.5894*10
-9

 1589.4 51 7282 19.9 First major component 
fJu-fSa=1595.7 

2 2.2959*10
-9

 2295.9 31.8 5041.2 13.8 fJu-fUr=2294.2 

3 2.4725*10
-9

 2472.5 68.4 4681.1 12.8 The most important 
component 
fJu-fNe=2479.1 

4 2.6491*10
-9

 2649.1 18.7 4369.1 12 Very close to fJu 

 2.6714*10-9 2671.4   11.862 fJu 

5 3.1789*10
-9

 3178.9 28.3 3640.9 10  

6 3.8853*10
-9

 3885.3 22.7 2978.9 8.2  

7 4.0619*10
-9

 4061.9 44.8 2849.4 7.8  

 1.6848*10-8 16848  686.7 1.88 fMa 

8 2.9050*10
-8

 29050 15 398.4  Contribution of Earth + 
Moon (synodic period of 
Jupiter from Earth) 

 3.1687*10-8 31687  365.25  fTe 

9 4.8832*10
-8

 48832 30 237  Contribution of Venus 

 5.1509*10-8 51509  224.7  fVe 

10 1.2892*10
-7

 128920 6.5 89.8  Contribution of Mercury 

 1.3157*10-7 131570  87.97  fMe 

 
Table 5.1 and Fig. 5.2 show the contributions of the first three planets (the contribution of 

Mars is negligible) to the solar orbital spectrum. Note the major contribution of Venus, that 
naturally results if we review Fig. 4.1 and Table 4.1 of the Planetary Orbitals (for 
convenience we have reproduced these items in Annex 1 to this article). From their 

                                                 
8 Spectral component amplitude varies depending on the method of analysis, analysis interval, or on applying or 
not a filter to the data, etc. Rapport of relative values is maintained, as well as major component frequencies. 



examination it becomes very clear that the second couple in intensity of the gravitational 
interaction after couple Sun-Jupiter is Sun-Venus, hence the contribution of Venus to the solar 
orbital spectrum must also be important. 

The first f1 spectral component with periods of 19.9 years is very close to the difference 
between the orbital frequencies of Jupiter and Saturn. The second f2 component with the 
period of 13.8 years is very close to the difference between the orbital frequencies of Jupiter 
and Uranus. Note that the most intense f3 spectral component with a period of 12.8 years 
corresponds to the average frequency of quasi-sinusoidal variation of Sun's acceleration, 
frequency very close to the difference between the orbital frequencies of Jupiter and Neptune. 
For other components the relationship with orbital frequencies has not yet being found. 

6 Possibilities for prediction of solar activity 
It is time to draw the reader's attention that so far we have only made a theoretical (pure 

mathematical) analysis of the motion of planets with given masses and periods of revolution 
on elliptical trajectories, but all these motions were not real planetary motions in real time but 
in simplified conditions 1, 2 and 3 of par. 1. In reality, the planets move in elliptical 
trajectories in relation to MC of the PS, but the orbits are not coplanar and apsides axes do not 
coincide either. However, at present the planets trajectories are well known (without this 
information space missions would not be possible), so the relations 2.9 and 2.10 can be 
adjusted so that they be valid in real time. Annex 2 shows the apsides axes rotation simulation 
results to demonstrate that this rotation, in contrast with the simplifying conditions in par. 1, 
does not alter initial results in terms of quality. Only the temporal distribution of the 
acceleration peak amplitude changes but not its spectral components. Neither the relatively 
low inclination of planetary orbits compared to the situation when they were coplanar can 
change the frequency distribution of solar acceleration. 

If we accurately determine the position of each planet at the present time, we can 
determine with the same accuracy the position of the Sun in relation to MC of PS at that time 
and its future evolution. The purpose of this knowledge is that we can very accurately 
determine abnormal acceleration momenta, and as a result, we can predict abnormal events in 
solar activity. As future evolutions of Sun acceleration may be predicted on reasonable terms 
from astronomical viewpoint, previous trajectories can also be analyzed and past positions of 
the Sun with important events in the history of solar activity can be correlated, in order to 
understand what results a certain acceleration in the past compared to the effects observed and 
recorded by observers can lead to. In this way one can make a calibration of the evolution of 
solar activity according to its orbital motion. 

Unfortunately, at present we do not know how long it takes for the distribution of kinetic 
energy impulse on Sun’s internal structure (how long it takes to change the internal state), that 
in order to predict what external effects will follow and when they will occur, depending on 
the size of impulse whose magnitude and time of occurrence are predictable by solar orbital 
method. 

7 Conclusions 
1. The dominant couple of AB in our planetary system is Sun-Jupiter, whose MC is 

outside the Sun at a distance ranging from 82450 km to Jovian aphelion and 10586 km at 
Jovian perihelion. Following the motion of Jupiter in its elliptical trajectory, the Sun will also 
run an elliptical motion between these two limits (see Fig. 3.1). We say that this is the 
contribution of Jupiter to the solar motion in the solar orbital. Likewise, all the planets in PS 
will each have a contribution to the motion of the Sun whose final position vector is given by 
the relation 2.8. 



2. Maximum limit of solar position vector 61.578 10MMr    km is the radius of the 

circular domain in which all the possible positions of the Sun are ranged, this domain being 
the first attribute of the solar orbital abstract object. 

3. Sun’s motion in its orbital is characterized by several temporal distributions: 
- Temporal distribution of x(t) and y(t) coordinates of solar center in relation 

to the MC of PS; 
- Temporal distribution of solar position vector module; 
- Temporal distribution of Sun’s velocity on its orbital; 
- Temporal distribution of solar acceleration; 

4. Each temporal distribution may be associated a frequency distribution. We chose 
as significant the frequency distribution of solar acceleration as the acceleration is on the one 
hand energy intake (if positive), and on the other hand as impulses with abnormally large 
values appear, which may affect the internal state of the Sun. 

5. Solar acceleration spectral analysis shows the presence of some spectral 
components with frequencies (periods) derived from the orbital frequencies of the planets in 
PS, or differences between the Jupiter frequency and other giant planets frequencies. These 
frequencies are the components of the second attribute of solar orbital abstract object; 

6. Spectral components of solar orbital are frequencies (periods) of some periodic 
processes of Sun’s motion overall, motion that could influence internal solar processes and 
therefore can generate known periodicity in solar activity. 

7. Solar acceleration abnormal peaks occurring at certain times, can lead to abnormal 
phenomena of solar activity. If the mathematical modeling of solar motion is consistent with 
the motion of the planets in real time the momenta of acceleration peak occurrence are 
predictable, therefore their effects on solar activity also. 

8. Currently, according to the data collected by observers since 1755, 23 complete 
cycles9 of sunspots (surnamed solar cycles) have been revealed. The duration of these cycles 
varies between 9 and 12.6 years, with an average of 10.6 years per cycle. Spectral analysis of 
Sun’s motion in its orbital reveals much more possible cycles, including the one found so far 
(average of f3 and f7 components, first and third component in intensity is 10.3 years). 
Unfortunately, modern methods and means of solar parameters measurement (especially  
from satellites) exist only since few decades ago, an interval insufficient for clear prominence 
of longer cycles, such as the one of 19.9 years for example, or of cyclical variations of other 
physical measures characteristic for solar activity and which could not be determined in the 
past. 

9. Spatial-temporal modulation of the solar position in relation to MC of PS causes a 
corresponding modulation of the solar gravitational field as the gravitational interaction is 
dependent on the distance between AB couples. For giant planets which are far away from the 
Sun this field variation is not so important, but for those nearby, especially for Mercury, can 
be one of the causes of the perihelion advance. 

                                                 
9 Wikipedia – List of solar cycles  



Annex 1 - Distribution of gravitational interactions intensity on AB 
couples in our planetary system 

Table X.1 
n AB Couple n AB Couple 
1 Sun - Mercury 24 Venus – Pluto 
2 Sun – Venus 25 Earth - Mars 
3 Sun – Earth 26 Earth - Jupiter 
4 Sun - Mars 27 Earth - Saturn 
5 Sun – Jupiter 28 Earth - Uranus 
6 Sun – Saturn 29 Earth - Neptune 
7 Sun – Uranus 30 Earth - Pluto 
8 Sun - Neptune 31 Mars - Jupiter 
9 Sun – Pluto 32 Mars - Saturn 
10 Mercury - Venus 33 Mars - Uranus 
11 Mercury - Earth 34 Mars - Neptune 
12 Mercury - Mars 35 Mars - Pluto 
13 Mercury - Jupiter 36 Jupiter - Saturn 
14 Mercury - Saturn 37 Jupiter - Uranus 
15 Mercury - Uranus 38 Jupiter - Neptune 
16 Mercury - Neptune 39 Jupiter - Pluto 
17 Mercury - Pluto 40 Saturn - Uranus 
18 Venus - Earth 41 Saturn - Neptune 
19 Venus - Mars 42 Saturn - Pluto 
20 Venus - Jupiter 43 Uranus - Neptune 
21 Venus - Saturn 44 Uranus - Pluto 
22 Venus - Uranus 45 Neptune - Pluto 
23 Venus - Neptune   
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Fig. X.1 Distribution of gravitational interactions intensity on couples in Table X.1 



Annex 2 – Sun motion in case of planetary apsides axes rotation  
With regard to the conditions in par. 1 on the calculation of planetary trajectories, in 

which we determined that elliptical trajectories have collinear apsides axes, in this annex we 
shall analyze the motion of the planets closest to the actual conditions, i.e. with apsides axes 
inclined with angles shown in the table of planetary orbitals elements in astronomy books10. 

The rotation of apsides axes is equivalent in viewpoint of relations 1.6 and 1.7 with the 
rotation of coordinate axes with  angle, after which, compared to the old x and y coordinates, 
the new x’ and y’ coordinates are: 

 ' cos sin ' sin cosx x y y x y        (X.2.1) 
which entered into relations 2.9 and 2.10, the new relations of position calculation (Pluto 
excluded as its contribution is minor, similar to that of Mars) become: 
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   

whose graphical representation, also for 131072 days (to be compatible with the FFT 
analysis) is given by Fig. X.2.1 for position, X.2.2 for position vector module, X.2.3 for 
velocity and X.2.4  for acceleration. 

 
Fig. X.2.1 - Solar trajectory due to all the planets (excluding Pluto) 

                                                 
10 Imke de Pater, Jack J. Lissauer – Planetary Science, Cambridge University Press, 2001 (p. 6) 
   *** - Efemeride astronomice pentru anul 2013, Bumbeşti Jiu, 2012 (p. 150) 



 
Fig. X.2.2 

 
Fig. X.2.3 

 
Fig. X.2.4 

 
Fig. X.2.5 –Solar acceleration spectrum for planetary apsides axes rotation  



Table X.2.1 – Major spectral components in case of apsides axes rotation  
k Frequency 

[Hz] 
Freq.*1012 

[Hz] 
Amplit. 
comp.  
rel.val.  

T 
[days] 

T 
[years] 

Comments 

1 1.5894*10
-9

 1589.4 50.8 (51) 7282 19.9 First major component 
fJu-fSa=1595.7 

2 2.2959*10
-9

 2295.9 30.4 (31.8) 5041.2 13.8 fJu-fUr=2294.2 

3 2.4725*10
-9

 2472.5 66.2 (68.4) 4681.1 12.8 The most important 
component 
fJu-fNe=2479.1 

4 2.6491*10
-9

 2649.1 15.5 (18.7) 4369.1 12 Very close to fJu 

5 3.1789*10
-9

 3178.9 37.6 (28.3) 3640.9 10  

6 3.8853*10
-9

 3885.3 19.7 (22.7) 2978.9 8.2  

7 4.0619*10
-9

 4061.9 44.8 (44.8) 2849.4 7.8  

8 2.9050*10
-8

 29050 15.6 (15) 398.4  Contribution of 
Earth+Moon 

9 4.8832*10
-8

 48832 29 (30) 237  Contribution of Venus 

10 1.2892*10
-7

 128920 6.4 (6.5) 89.8  Contribution of Mercury 

 
In Fig. X.2.5, and Table X.2.1 one can see that the variation in direction of apsides axes 

does not affect in terms of quality the major spectral components and in terms of quantity the 
differences are quite small. For comparison, in the column showing the component amplitude 
the value in the case of apsides axes alignment is included in brackets, thereby it can be seen 
low influence of rotation of these axes. The most important influence is exerted by apsides 
axes rotation on the temporal distribution of solar acceleration peaks, i.e. of the moments 
when important and abnormal events of solar activity may occur. 
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