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1 - Mathematical modelling 

1.1 - Introduction 
To begin with, let us remind the reader what an orbital is, a notion described in detail in 

[4]: An orbital of an astronomical body (AB) belonging to a planetary system (PS) has the 
following invariant attributes in its composition: 

− The spatial area in which the orbital motion is inscribed (defined by the semi-major 
axis of the orbit, eccentricity and inclination of the orbital plane), attributes defined in 
relation to the centre of mass (CM) of the PS and in relation to the equatorial plane of the 
Sun; 

− Orbital period or its inverse - orbital frequency. 
Unlike the previous research [5], in which the motion of the planets determining the 

solar motion was modelled purely theoretically, without a direct connection with the actual 
motion of the planets, in this research paper we will use an approximation method for the 
position of the planets indicated in [1], which describes the calculation method for the 
positions of the planets using ephemerides valid in certain time intervals, from which we 
chose the table with the longest interval (3000BC-3000AC). To solve Kepler’s equation, 
however, we used a method different from the one in [1], a method indicated in [2] in which 
the solutions of the Kepler’s equation are approximated with Bessel functions of first or 
second order. Although in [1] it is expressly specified that in the case of giant planets the 
corrections indicated in table 1.5.1.B will be used to calculate the mean anomaly M, we will 
initially neglect these corrections for reasons that we will discuss towards the end of this 
research. 

1.2 - Ellipse as a projection of a circle 
Let a circle with a radius be in an XY plane, where the X axis is horizontal and the Y 

axis is vertical, the origin being in the centre of the circle. Let XY' be a second plane inclined 
at an angle ϕ  from the XY plane around the X axis. If we project the circle from the XY 
plane to the XY' plane, we obtain an ellipse with the a major axis collinear to the X axis and 
the minor axis: 

 cos( )b a ϕ= ⋅   (1.2.1) 
collinear to the Y' axis. In an ellipse there is the equation: 

 2 2 2a bε = −   (1.2.2) 
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whereε  is the linear eccentricity or focal length. The value: 

 e
a
ε

=   (1.2.3) 

is called numerical eccentricity. If we replace equations 1.2.1 and 1.2.3 in 1.2.2 we will 
obtain: 

 2 21 cos ( )e ϕ= −   (1.2.4) 
i.e.: 

 sin( )e ϕ=   (1.2.5) 
or: 

 arcsin( )eϕ =   (1.2.6) 
From equation 1.2.6 we can determine ϕ   for the trajectories of current planets, with e 

(eccentricity of the orbit) being known from the tables with the orbit data, and from equation 
1.2.1 we can determine b, with a (semi-major axis of the orbit) being known. The result of 
the equations 1.2.2 and 1.2.3 is: 

 2
1 1b a e= −   (1.2.7) 

and the result of the equations 1.2.1 and 1.2.6 is: 
 2 cos(arcsin( ))b a e=   (1.2.8) 
Take, for example, the case of Earth, where 1a UA= , 0.01671022e = . With these 

values it follows that 1 2 0.9998603745b b= =  AU, a proof that equations 1.2.7 and 1.2.8 are 
equivalent. 

Comment1.2.1: The whole paragraph 1.2 was intended to justify the replacement of the expression 
21 e−  with cos(arcsin( ))e  in the equations from the next paragraph. 

1.3 - Motion on an elliptical trajectory 
If the radius vector of the a radius circle performs a uniform rotational motion with the T 

period, the angle between the radius vector and the X axis is called (in the case of 
astronomers [3]) an eccentric anomaly E. On the elliptical trajectory resulting from the 
projection of the a radius circle, the radius vector of the planet ( , )r x y  originating in a focus 
will perform a rotation with uneven speed, but with the same period T (t being the time from 
the moment of passing through the perihelion); in this case the v angle of the radius vector of 
the planet with respect to the X axis is called true anomaly, and the value: 

 2M t
T
π

= ⋅   (1.3.1) 

is called mean anomaly. There is a relationship between these values called Kepler’s 
equation: 

 sin( )M E e E= − ⋅   (1.3.2) 
Comment 1.3.1: The term sin( )e E⋅  is dimensionless (numerical), but the dimensional analysis 

of equation 1.3.2 tells us that this term must have the dimension of an angle, so in this case e will be 
assigned either a dimension in radians (unchanged numerical value) or in degrees by multiplying by 
180 /π (see [1]). 

Equation 1.3.2 is a transcendental equation, the solutions of which (according to [2]) 
were found by Friedrich Bessel in the form of a power series: 
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where ( )nJ x  is the Bessel function of order n: 
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For small eccentricities ( 0.21e ≤ , the case of the planets in our planetary system) only 
the first term of the series (e) is needed to keep the orbital position error less than 4.1%. For 
better accuracy the second term is 

2

2
e . Finally, the equations that give the positions of a 

planet as a function of time with respect to the X axis (perihelion-aphelion axis) in case of 
ignoring the Kepler equation are: 

 
2

( ) cos( ) [cos( ) ]

( ) sin( ) sin( ) cos(arcsin( )) sin( ) 1

x t a M a e a M e

y t b M a M e a M e

≅ ⋅ − ⋅ = ⋅ −

≅ ⋅ = ⋅ ⋅ = ⋅ ⋅ −
  (1.3.5) 

or taking into account the Kepler equation for 0.21e ≤ : 

 
( ) cos[ sin( )] [cos[ sin( )] ]
( ) sin[ sin( )] cos(arcsin( ))

x t a M e M a e a M e M e
y t a M e M e

≅ ⋅ + ⋅ − ⋅ = ⋅ + ⋅ −
≅ ⋅ + ⋅ ⋅

  (1.3.6) 

and finally, for a better approximation: 

 

2

2

( ) [cos[ sin( ) sin(2 )] ]
2

( ) sin[ sin( ) sin(2 )] cos(arcsin( ))
2

ex t a M e M M e

ey t a M e M M e

≅ ⋅ + ⋅ + ⋅ −

≅ ⋅ + ⋅ + ⋅ ⋅
  (1.3.7) 

Please note! In equations 1.3.6, 1.3.7 the correction indicated in comment 1.3.1. applies 
to e or 2 2e . Note that these equations are valid for the motion of a planet on a heliocentric 
elliptical trajectory under special conditions, i.e. the apse line (perihelion-aphelion axis) is 
collinear to the X axis, and the start time is the moment of passing through the perihelion. 

The fact that the actual trajectories of the planets in our solar system are not coplanar has 
not been taken into account either, however, the differences in inclination with respect to the 
solar equatorial plane of the orbits of the giant planets1 are less than 0.1 radians, therefore 
they can be neglected. 

1.4 - Motion of PS elements with respect to CM of PS (in barycentric coordinates) 
Let a PS be represented in fig. 1.4.1 consisting of n small astronomical bodies (ABs) 

(planets), with masses m1, m2, ...mn  orbiting a large AB (Sun) with mass mS. In relation to an 
external 2D reference system with O origin and XY axes, the PS elements have spatial 
position vectors 1 2, , nr r r  and Sr . 
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Fig. 1.4.1 

                                                 
1 For long-term analyses of the parameters of the solar orbital, only the motions of the four giant planets 

are important, the rest of the planets having (with a few exceptions) only minor contributions. 



Under these conditions, the centre of mass CM of the PS has the position vector CMr  
given by the equation: 

 1 1 2 2

1 2

n n S S
CM

n S

m r m r m r m rr
m m m m
+ + + +

=
+ + + +





  (1.4.1) 

If we move the O origin of the reference system to CM, this is equivalent to writing in 
the equation 1.4.1 0CMr = . By noting 1 2 n S Tm m m m m+ + + + = , where mT is the total mass 
of the PS, the equation 1.4.1 becomes: 

 1 2
1 2

S n
S n

T T T T

m mm mr r r r
m m m m

= − − − −   (1.4.2) 

hence the position vector of the Sun with respect to CM: 

 1 2
1 2

n
S n

S S S

mm mr r r r
m m m

= − − − −   (1.4.3) 

By noting S
i

i

m q
m

=  [1, ]i n∈ , equation 1.4.3 becomes: 
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 1.5 - Actual motion of a planet in heliocentric coordinates 
In the heliocentric coordinate system the reference plane is the equatorial plane of the 

Sun in which the reference axis eclX  is the axis of the equinoxes (see fig. 1.5.1). The values 
involved in defining planetary orbits in this reference system are: 

- Ω  the longitude of the ascending node AN; 
- ω  the argument of perihelion; 
- ϖ ω= +Ω  the longitude of the perihelion; 
- M  is the mean anomaly; 
- v it is the true anomaly; 
- r is the radius vector of the planet; 
- L M ω= + +Ω  is the mean longitude 

 
Fig. 1.5.1 

The approximation of the position of a planet can be done using the orbital elements 
already mentioned together with those indicated below, their values and rates of secular 
variation being given in tables 1.5.1.A and 1.5.1.B, values valid for the time interval 3000BC 
- 3000AD. 

The orbital elements together with their secular variations are: 
- 0 ,a a  semi-major axis of the orbit [AU, AU/century]; 



- 0 ,e e  eccentricity [, /century]; 
- 0 ,i i orbit inclination [degrees, degrees/century]; 
- 0 ,L L  mean longitude [degrees, degrees/century]; 
- 0 ,ϖ ϖ  perihelion longitude [degrees, degrees/century]; 
- 0 ,Ω Ω  ascending node longitude [degrees, degrees/century]; 
For the calculation of the orbital elements we calculate 0a a a t= + ⋅ , 0e e e t= + ⋅  etc. 

where t is the number of centuries past since the day 2000.0efet J= . 
With the data in tables 1.5.1.A and 1.5.1.B we then calculate M with the equation: 
 2 cos( ) sin( )M L b t c f t s f tϖ= − + ⋅ + ⋅ ⋅ + ⋅ ⋅   (1.5.1) 
Now we can determine the position vector ( ) ( ) ( )r t x t y t= +  of the planet in the plane of 

its orbit (the X axis being the apse line) with the equations 1.3.6 or 1.3.7. Next, by rotating 
the coordinate axes we will obtain the ecliptic coordinates of the planets (see fig. 1.5.1) with 
the equations: 

( ) (cos cos sin sin cos ) ( ) ( sin cos cos sin cos ) ( )xe t i x t i y tω ω ω ω= Ω− Ω ⋅ + − Ω− Ω ⋅   (1.5.2) 
( ) (cos sin sin cos cos ) ( ) ( sin sin cos cos cos ) ( )ye t i x t i y tω ω ω ω= Ω+ Ω ⋅ + − Ω+ Ω ⋅   (1.5.3) 

 ( ) (sin sin ) ( ) (cos sin ) ( )ze t i x t i y tω ω= ⋅ + ⋅   (1.5.4) 
Given the small inclination of the orbital planes, especially for the giant planets, we will 

consider 0i = , so only the equations 1.5.2 and 1.5.3 will remain (in the reduced version): 
 ( ) (cos cos sin sin ) ( ) ( sin cos cos sin ) ( )xe t x t y tω ω ω ω= Ω− Ω ⋅ + − Ω− Ω ⋅   (1.5.5) 
 ( ) (cos sin sin cos ) ( ) ( sin sin cos cos ) ( )ye t x t y tω ω ω ω= Ω+ Ω ⋅ + − Ω+ Ω ⋅   (1.5.6) 

where xe and ye are the ecliptic coordinates of the planets along the axes Xecl şi Yecl in Fig. 
1.5.1.  

Comment 1.5.1: It should be noted that in equations 1.5.5 and 1.5.6 the planetary position vectors 
are calculated in heliocentric ecliptic coordinates, while the position vector of the Sun given by equation 
1.4.4 is calculated in the coordinates of the centre of mass of PS (barycentric). Given that the distance 
from the sun to the CM can reach up to 61.58 10⋅ km, this means a maximum error of 2.73% for 
Mercury's position vector, but a much smaller error for the positions of the giant planets that have the 
largest contribution to the solar position relative to CM. 

Table 1.5.1.A 
Planet 

0 ,a a   

au,au/cty 
0 ,e e  

 , /cty 
0 ,i i   

deg.,deg./cty 
0 ,L L   

deg.,deg./cty 
0 ,ϖ ϖ   

deg.,deg./cty 
0 ,Ω Ω   

deg.,deg./cty 
Me 0.38709843 

0.00000000 
0.20563661 
0.00002123 

7.00559432 
-0.00590158 

252.25166724 
149472.67486623 

77.45771895 
0.15940013 

48.33961819 
-0.12214182 

Ve 0.72332102 
-0.00000026 

0.00676399 
-0.00005107 

3.39777545 
0.00043494 

181.97970850 
58517.81560260 

131.76755713 
0.05679648 

76.67261496 
-0.27274174 

Ea 1.00000018 
-0.00000003 

0.01673163 
-0.00003661 

-0.00054346 
-0.01337178 

100.46691572 
35999.37306329 

102.93005885 
0.31795260 

-5.11260389 
-0.24123856 

Ma 1.52371243 
0.00000097 

0.09336511 
0.00009149 

1.85181869 
-0.00724757 

-4.56813164 
19140.29934243 

-23.91744784 
0.45223625 

49.71320984 
-0.26852431 

Ju 5.20248019 
-0.00002864 

0.04853590 
0.00018026 

1.29861416 
-0.00322699 

34.33479152 
3034.90371757 

14.27495244 
0.18199196 

100.29282654 
0.13024619 

Sa 9.54149883 
-0.00003065 

0.05550825 
-0.00032044 

2.49424102 
0.00451969 

50.07571329 
1222.11494724 

92.86136063 
0.54179478 

113.63998702 
-0.25015002 

Ur 19.18797948 
-0.00020455 

0.04685740 
-0.00001550 

0.77298127 
-0.00180155 

314.20276625 
428.49512595 

172.43404441 
0.09266985 

73.96250215 
0.05739699 

Ne 30.06952752 
0.00006447 

0.00895439 
0.00000818 

1.77005520 
0.00022400 

304.22289287 
218.46515314 

46.68158724 
0.01009938 

131.78635853 
-0.00606302 

Pl 39.48686035 
0.00449751 

0.24885238 
0.00006016 

17.14104260 
0.00000501 

238.96535011 
145.18042903 

224.09702598 
-0.00968827 

110.30167986 
-0.00809981 

 
 Additional terms to be added to the calculation of M for giant planets, in the same 
time interval 3000BC - 3000AD. 



Table 1.5.1.B 
Planet b c s f 
Ju -0.00012452 0.06064060 -0.35635438 38.35125 
Sa 0.00025899 -0.13434469 0.87320147 38.35125 
Ur 0.00058331 -0.97731848 0.17689245 7.67025 
Ne -0.00041348 0.68346318 -0.10162547 7.67025 

2 - Main distributions of the solar orbital 

2.1 - Primary spatiotemporal distribution2 of the position of the Sun 
As mentioned in the introduction of this research, for the beginning we will disregard the 

corrections introduced by table 1.5.1.B, this fact meaning that the mean anomaly M of a 
planet will be calculated with the equation: 

 M L ϖ= −   (2.1.1) 
valid for both terrestrial and giant planets. We will discuss the reasons for this disregard 
towards the end of this research. 

The primary temporal distribution of the position of the Sun in its motion around the 
centre of mass of the planetary system (CM) is given by the equations: 

 
7 7

0 0

( , ) ( , )( ) ; ( ) [ ]
i ii i

xe i t ye i txes t AU yes t AU km
q q= =

= − ⋅ = − ⋅∑ ∑   (2.1.2) 

where xes is the solar coordinate along the ecliptic axis Xecl (axis of equinoxes, see fig. 1.5.1), 
yes is the solar coordinate along the axis Yecl, xe(i,t) and ye(i,t) are the ecliptic coordinates of 
the planet i  ( [0,7]i∈ ) as a function of t (given by equations 1.5.5 and 1.5.6), and qi is the 
ratio of the mass of the Sun and the mass of the planet i. 81.4959787 10AU = ⋅  km is the 
astronomical unit of distance. Time t is expressed in centuries relative to the reference year 
J2000, the time increment being Nd=8.359990576 days (3). The graphical representation of 
equations 2.1.2 in linear Cartesian coordinates is given in fig. 2.1.1. 

 
Fig.  2.1.1 Solar orbital in linear Cartesian coordinates 

From Fig. 2.1.1 it can be seen that the space domain of the solar orbital is occupied 
almost uniformly, but the observation is not correct - in the immediate vicinity of the CM 
(with coordinates 0.0) the space domain4 is void. This aspect is visible in the logarithmic 
Cartesian representation in fig. 2.1.2.  

                                                 
2 The names of the distributions are those introduced in chap. 2 of the research [6]. 
3 The time increment Nd days resulted from the division of the time interval of 60 centuries in which the 

ephemerides table is valid (3000BC-3000AC) with the maximum number of samples allowed by the software 
used for modeling (Mathcad 14) for graphs (218). 

4 In the vicinity of this domain, the radial acceleration of the Sun reaches very high values. 



 
Fig. 2.1.2 Solar orbital in logarithmic Cartesian coordinates 

From fig. 2.1.2 we see that the space area with a radius less than approx. 32 10⋅  km 
relative to CM is unoccupied, i.e. the proximity of the Sun to this area is extremely rare. 

2.2 – First-order derived distribution of the solar position 
The components of the derived time distribution of the solar position (orbital velocity) 

are: 

 ( ) ( ) ( ) ( )( ) ; ( )xes t xes t t yes t yes t t kmvxes t vyes t dayNd Nd
− − ∆ − − ∆  = =   

  (2.2.1) 

where xes(t) and yes(t) are given by equations 2.1.2, and 42.28884326 10t −∆ = ⋅  is the time 
increment in centuries corresponding to the Nd days. The graphical representation of 
equations 2.2.1 is given in fig. 2.2.1. 

 
Fig. 2.2.1 Time distribution of solar orbital velocity around the CM 

Comment 2.2.1: The coloured area in Fig. 2.2.1 represents the range of solar orbital velocity 
values, a range between two limits: outer and inner. The outer limit, with the values marked on the figure, 
consists of Jupiter's contribution to the orbital velocity of the Sun (shown in Fig. 3.1.2) plus the sum of the 
contributions of the other planets (especially the giant ones) to the orbital velocity of the Sun presented in 
par. 3. The inner limit also consists of Jupiter's contribution to the orbital velocity of the Sun minus the sum 
of the contributions of the other planets. This foreshadows the major role of the planet Jupiter in the 
processes that take place in our solar system. 

Time distribution of the solar orbital velocity module 2 2( ) ( ) ( )ves t vxes t vyes t= +  is 
shown in Fig. 2.2.2, the X axis being graduated in centuries (the value 0 corresponds to the 
year J2000). 



 
Fig. 2.2.2 Time distribution of the solar orbital velocity module. 

2.3 – Second-order derived distribution of the solar position 
The components of the derived time distribution of the solar velocity (solar orbital 

acceleration) are: 

2
( ) ( ) ( ) ( )( ) ; ( )vxes t vxes t t vyes t vyes t t kmaxes t ayes t dayNd Nd

− − ∆ − − ∆  = =   
  (2.3.1) 

and the graphical representation: 

 
Fig. 2.3.1 Distribution of solar orbital acceleration around CM 

Comment 2.3.1: In the case of solar orbital acceleration, there is also a domain in which the values 
of this solar parameter fall, a domain between the two limits: outer and inner. As in the case of the solar 
orbital velocity, the outer limit with the values marked on the figure is given by Jupiter's contribution to the 
orbital acceleration of the Sun (shown in Fig. 3.1.4) plus the sum of the other planetary contributions. The 
inner limit is also given by the Jovian contribution to the orbital acceleration of the Sun minus the sum of 
the other planetary contributions to this parameter. 

Temporal distribution of the solar orbital acceleration module 2 2( ) ( ) ( )aes t axes t ayes t= +  
is shown in Fig. 2.3.2: 

 
Fig. 2.3.2 Time distribution of the solar orbital acceleration module 

2.4 - Distributions of solar distance from CM 
The distance of the Sun from the CM is given by the module of the solar position vector:  

 2 2res( t ) xes( t ) yes( t )= +   (2.4.1) 
(see Fig. 2.4.1 a and b) and the derived distributions of this distance are: 

 ( ) ( )( ) res t res t tvres t
Nd

− − ∆
=   (2.4.2) 



for the solar radial velocity (see Fig. 2.4.2) and: 

 ( ) ( )( ) vres t vres t tares t
Nd

− − ∆
=   (2.4.3) 

for solar radial acceleration (see Fig. 2.4.3). 

 
Fig. 2.4.1.a Linear solar position vector module 

 
Fig. 2.4.1.b Logarithmic solar position vector module  

 

 
Fig. 2.4.2 Radial velocity of the Sun  

 
Fig. 2.4.3 Radial acceleration of the Sun  

Comment 2.4.1: In fig. 2.4.3 in order to be able to use logarithmic coordinates for the Y axis (for a 
more suggestive representation) the negative values were avoided by the translation with a unit of ares(t). 

3 - The individual contributions of the planets to the motion of the Sun5 
Next we will analyse the individual contributions of the planets surrounding the Sun 

starting with the giant planets (which have the most important contribution) and continuing 

                                                 
5 Without the corrections in table 1.5.1.B 



with the telluric planets. As we will see below, the analysis of the individual contributions of 
the planets to the motion of the Sun is very important because on this basis we will be able to 
determine: 

1. The number of spectral components (harmonics) produced by each planet, a 
number proportional to the eccentricity e of the orbit; 

2. Ratio 1

2

( )
( )

i
ai

i

A fq
A f

=  where A(f1i) and A(f2i) are the amplitudes of the first and 

second harmonics produced by the planet i on solar motion, inversely proportional to e; 
3. The lists of the individual spectral components of the planets will be the basis for 

calculating the positive frequency differences present in the spectrum of the solar orbital, 
these differences being the basis for estimating the weights of the contributions of different 
planets to the solar motion; 

4. The global values of the solar parameters velocity and orbital acceleration are 
given by the relationships between these values and the values of the individual planetary 
contributions to these parameters (see comments 2.3.1 and 2.3.2). 

Because the processes of solar motion are periodic, therefore characterized by a 
multitude of frequencies, we will establish some rules on the names adopted for these 
frequencies: 

1. We assign each planet i ( [0,7]i∈ 6) a name p ( [ , , , , , , , ]p Me Ve Ea Ma Ju Sa Ur Ne∈ ); 
2. The natural frequency of the planet named p (fp0) is 1i if T= , where iT  is the 

revolution period of the planet i around the Sun, expressed in seconds; 
3. The harmonics of the planet p (fp1...fpn) are the frequencies resulting from the 

spectral analysis of the contribution of planet p to solar motion. 

3.1 – Jupiter’s contribution to solar motion 
The solar position due exclusively to Jupiter in ecliptic coordinates7 is given by the 

equations: 

 
4 4

(4, ) (4, )( ) ; ( ) [ ]xe t ye txesJu t AU yesJu t AU km
q q

= − ⋅ = − ⋅   (3.1.1) 

and the graphical representation in Fig. 3.1.1: 

 
Fig. 3.1.1. Solar position due to Jupiter 

First-order derived distribution of the solar position (solar velocity) due to Jupiter is 
given by the equations:  

( ) ( ) ( ) ( )( ) ; ( )xesJu t xesJu t t yesJu t yesJu t t kmvxesJu t vyesJu t dayNd Nd
− − ∆ − − ∆  = =   

    (3.1.2) 

                                                 
6 Pluto's contribution to solar motion is insignificant in amplitude, in addition, having a very long period of 

revolution, the spectral analysis over 60 centuries is inaccurate (there are only 24 periods). 
7 See Comment 1.5.1 



where xesJu(t) and yesJu(t) are given by equations 3.1.1, and vxesJu(t) and vyesJu(t) are the 
components of the solar orbital velocity due to Jupiter and represented in Fig. 3.1.2: 

 
Fig. 3.1.2 Components of the solar orbital velocity due to Jupiter 

The module of the solar orbital velocity due to Jupiter is given by the equation 
2 2( ) ( ) ( )vesJu t vxesJu t vyesJu t= +  the representation of which is given in Fig. 3.1.3.  

 
Fig. 3.1.3 Module of the solar orbital velocity due to Jupiter 

Second-order derived distribution of the solar position due to Jupiter (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesJu t vxesJu t t vyesJu t vyesJu t t kmaxesJu t ayesJu t dayNd Nd

− − ∆ − − ∆  = =   
 (3.1.3) 

where vxesJu(t) and vyesJu(t) are given by equations 3.1.2, and axesJu(t) and ayesJu(t) are 
the components of the solar orbital acceleration due to Jupiter and represented in Fig. 3.1.4: 

 
Fig. 3.1.4 Components of solar orbital acceleration due to Jupiter 

The module of solar orbital acceleration 2 2( ) ( ) ( )aesJu t axesJu t ayesJu t= +  produced 
by Jupiter is shown in Fig. 3.1.5: 

 
Fig. 3.1.5 Module of the solar orbital acceleration due to Jupiter 



 
Fig. 3.1.6 aesJu pg spectrum 

In Fig. 3.1.6 the parameter spectrum aesJu(t) from fig. 3.1.5 is represented following 

FFT analysis with data filtered through a Gaussian window type 
2

( )
n

pg n e
µ

σ
− − 

 = ; 
2
Nµ = ;  

 
3
µσ = , where n is the sample number in the string of 182N =  samples. 

The more important spectral components in terms of amplitude of the Jovian 
contribution to the solar aes resulting from Fig. 3.1.6 are given in table 3.1.1. 

Table 3.1.1 

3.2 – Saturn’s contribution to solar motion 
The solar position due exclusively to Saturn is given by the equations: 

 
5 5

(5, ) (5, )( ) ; ( ) [ ]xe t ye txesSa t AU yesSa t AU km
q q

= − ⋅ = − ⋅   (3.2.1) 

and their graphical representation is given in Fig. 3.2.1. 
The derived distribution of the solar position due to Saturn is given by the equations:  

( ) ( ) ( ) ( )( ) ; ( )xesSa t xesSa t t yesSa t yesSa t t kmvxesSa t vyesSa t dayNd Nd
− − ∆ − − ∆  = =   

 (3.2.2) 

where xesSa(t) şi yesSa(t) are given by equations 3.2.1, and vxesSa(t) and vyesSa(t) are the 
solar orbital velocities due to Saturn given by equations 3.2.2 and represented in Fig. 3.2.2. 

 The module of the solar orbital velocity due to Saturn is given by the equation 
2 2( ) ( ) ( )vesSa t vxesSa t vyesSa t= +  the representation of which is given in Fig. 3.2.3: 

 
Fig. 3.2.1 Solar position due to Saturn 

Frequency [Hz] Amplitude Comments 
f1=2.6724e-009 8.0105e-005 fJu1 
f2=5.3447e-009 4.3270e-006 fJu2=2fJu1  qa=18.51  
f3=8.0118e-009 7.8814e-008 fJu3=3fJu1 
f4=1.0684e-008 8.0121e-009 fJu4=4fJu1 
f5=1.3357e-008 4.7326e-010 fJu5=5fJu1 



 
Fig. 3.2.2 Components of the solar orbital velocity due to Saturn 

 
Fig. 3.2.3 Mdule of the solar orbital velocity due to Saturn 

Second-order derived distribution of the solar position due to Saturn (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesSa t vxesSa t t vyesSa t vyesSa t t kmaxesSa t ayesSa t dayNd Nd

− − ∆ − − ∆  = =   
  (3.2.3) 

where vxesSa(t) and vyesSa(t) are given by equations 3.2.2, and axesSa(t) and ayesSa(t) are 
the components of the solar orbital acceleration due to Saturn and represented in Fig. 3.2.4: 

 
Fig. 3.2.4 Components of solar orbital acceleration due to Saturn 

The module of solar orbital acceleration 2 2( ) ( ) ( )aesSa t axesSa t ayesSa t= +  produced 
by Saturn is shown in Fig. 3.2.5: 

 
Fig. 3.2.5 Module of solar orbital acceleration due to Saturn 

Spectral analysis of the parameter aesSa(t) shown in Fig. 3.2.5 is given in Fig. 3.2.6 
under the same conditions as for Jupiter. 



 
Fig. 3.2.5 aesSa pg spectrum 

The spectral components of Saturn’s contribution to the solar motion resulting from Fig. 
3.2.5 are given in table 3.2.1. 

Table 3.2.1 

3.3 - Uranus' contribution to solar motion 
The solar position due exclusively to Uranus is given by the equations: 

 
6 6

(6, ) (6, )( ) ; ( ) [ ]xe t ye txesUr t AU yesUr t AU km
q q

= − ⋅ = − ⋅   (3.3.1) 

and their graphical representation is given in Fig. 3.3.1. 

 
Fig. 3.3.1 Solar position due to Uranus 

The derived distribution of the solar position due to Uranus is given by the equations: 

  ( ) ( ) ( ) ( )( ) ; ( )xesUr t xesUr t t yesUr t yesUr t t kmvxesUr t vyesUr t dayNd Nd
− − ∆ − − ∆  = =   

   (3.3.2) 

where xesUr(t) and yesUr(t) are given by equations 3.3.1, and vxesUr(t) and vyesUr(t) are the 
components of the solar orbital velocity due to Uranus given by equations 3.3.2 and 
represented in Fig. 3.3.2. 

 The module of the solar orbital velocity due to Uranus is given by the equation 
2 2( ) ( ) ( )vesUr t vxesUr t vyesUr t= +  the representation of which is given in Fig. 3.3.3: 

Frequency [Hz] Amplitude Comments 
f1=1.0774e-009 9.5205e-006 fSa1 
f2=2.1495e-009 7.6037e-007 fSa2=2fSa1  qSa=12.52 
f3=3.2269e-009 1.8746e-008 fSa3=3fSa1 
f4=4.299e-009 2.4874e-009 fSa4=4fSa1 
f5=5.3764e-009 2.1108e-010 fSa5=5fSa1 



 
Fig. 3.3.2 Components of the solar orbital velocity due to Uranus 

 
Fig. 3.3.3 Module of the solar orbital velocity due to Uranus 

Second-order derived distribution of the solar position due to Uranus (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesUr t vxesUr t t vyesUr t vyesUr t t kmaxesUr t ayesUr t dayNd Nd

− − ∆ − − ∆  = =   
  (3.3.3) 

where vxesUr(t) and vyesUr(t) are given by equations 3.3.2, and axesUr(t) and ayesUr(t) are 
the components of the solar orbital acceleration due to Uranus and represented in Fig. 3.3.4: 

 
Fig. 3.3.4 Components of solar orbital acceleration due to Uranus 

The module of solar orbital acceleration 2 2( ) ( ) ( )aesUr t axesUr t ayesUr t= +  produced 
by Uranus is represented in Fig. 3.3.5: 

 
Fig. 3.3.5 Module of the solar orbital acceleration due to Uranus 

Spectral analysis of the parameter aesUr(t) shown in Fig. 3.3.5 is given in Fig. 3.3.6 
under the same conditions as for Jupiter and Saturn. 



 
Fig. 3.3.6 aesUr pg spectrum 

The spectral components of Uranus’ contribution to the solar motion resulting from Fig. 
3.3.6 are given in Table 3.3.1. 

Table 3.3.1 
 

3.4 – Neptune’s contribution to solar motion 
The solar position due exclusively to Neptune is given by the equations: 

 
7 7

(7, ) (7, )( ) ; ( ) [ ]xe t ye txesNe t AU yesNe t AU km
q q

= − ⋅ = − ⋅   (3.4.1) 

and their graphical representation is given in Fig. 3.4.1. First-order derived distribution of the 
solar position due to Neptune is given by the equations: 

  ( ) ( ) ( ) ( )( ) ; ( )xesNe t xesNe t t yesNe t yesNe t t kmvxesNe t vyesNe t dayNd Nd
− − ∆ − − ∆  = =   

  (3.4.2) 

where xesNe(t) and yesNe(t) are given by equations 3.4.1, and vxesNe(t) and vyesNe(t) are the 
solar orbital velocities due to Neptune, given by equations 3.4.2 and represented in Fig. 3.4.2. 

 The module of the solar orbital velocity due to Neptune is given by the equation 
2 2( ) ( ) ( )vesNe t vxesNe t vyesNe t= +  the representation of which is given in Fig. 3.4.3: 

 
Fig. 3.4.1 Solar position due to Neptune 

 
Fig. 3.4.2 Components of the solar orbital velocity due to Neptune 

Frequency Amplitude Comments 
f1=3.7498e-010 2.744e-007 fUr1 
f2=7.5523e-010 1.6678e-008 fUr2=2fUr1 qUr=16.45 
f3=1.1302e-009 3.1394e-010 fUr3=3fUr1 
f4=1.5105e-009 3.1352e-011 fUr4=4fUr1 



 
Fig. 3.4.3 Module of the solar orbital velocity due to Neptune 

Second-order derived distribution of the solar position due to Neptune (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesNe t vxesNe t t vyesNe t vyesNe t t kmaxesNe t ayesNe t dayNd Nd

− − ∆ − − ∆  = =   
    (3.4.3) 

where vxesNe(t) and vyesNe(t) are given by equations 3.4.2, and axesNe(t) and ayesNe(t) are 
the components of the solar orbital acceleration due to Neptune and represented in fig. 3.4.4: 

 
Fig. 3.4.4 Components of solar orbital acceleration due to Neptune 

The module of solar orbital acceleration 2 2( ) ( ) ( )aesNe t axesNe t ayesNe t= +  produced 
by Neptune is shown in Fig. 3.4.5: 

 
Fig. 3.4.5 Module of solar orbital acceleration due to Neptune 

Spectral analysis of the parameter aesNe(t) shown in Fig. 3.4.5 is given in Fig. 3.4.6 
under the same conditions as for Jupiter, Saturn and Uranus. 

 
Fig. 3.4.6 aesNe pg spectrum 

The spectral components of Neptune’s contribution to the solar motion resulting from 
Fig. 3.4.6 are given in Table 3.4.1. 

Table 3.4.1 
 

3.5 - Mars' contribution to solar motion 
The solar position due exclusively to Mars is given by the equations: 

Frequency Amplitude Comments 
f1=1.9277e-010 2.3993e-008 fNe1 
f2=3.8554e-010 2.8049e-010 fNe2=2fNe1 qa=85.5 
f3=5.7567e-010 1.013e-012 fNe3=3fNe1 



 
3 3

(3, ) (3, )( ) ; ( ) [ ]xe t ye txesMa t AU yesMa t AU km
q q

= − ⋅ = − ⋅   (3.5.1) 

and their graphical representation is given in Fig. 3.5.1. First-order derived distribution of the 
solar position due to Mars is given by the equations: 

( ) ( ) ( ) ( )( ) ; ( )xesMa t xesMa t t yesMa t yesMa t t kmvxesMa t vyesMa t dayNd Nd
− − ∆ − − ∆  = =   

  (3.5.2) 

where xesMa(t) and yesMa(t) are given by equations 3.5.1, and vxesMa(t) and vyesMa(t) are 
the solar orbital velocities due to Mars, given by equations 3.5.2 and represented in Fig. 3.5.2. 

 The module of the solar orbital velocity due to Mars is given by the equation 
2 2( ) ( ) ( )vesMa t vxesMa t vyesMa t= +  and does not show any variation in amplitude 

throughout the investigated duration, so we no longer represent it. 

 
Fig. 3.5.1 Solar position due to Mars 

 
Fig. 3.5.2 Solar orbital velocity due to Mars 

Second-order derived distribution of the solar position due to Mars (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesMa t vxesMa t t vyesMa t vyesMa t t kmaxesMa t ayesMa t dayNd Nd

− − ∆ − − ∆  = =   
   (3.5.3) 

where vxesMa(t) and vyesMa(t) are given by equations 2.5.2, and axesMa(t) and ayesMa(t) 
are the components of the solar orbital acceleration due to Mars represented in Fig. 3.5.3: 

 
Fig. 3.5.3 Solar orbital acceleration due to Mars 

The module of solar orbital acceleration 2 2( ) ( ) ( )aesMa t axesMa t ayesMa t= +  
produced by Mars shows no variation in time so we no longer represent it, but its spectral 
analysis is given in Fig. 3.5.4 under the same conditions as for giant planets. 



 
Fig. 3.5.4 aesMa pg spectrum 

The spectral components of Mars’ contribution to the solar motion resulting from Fig. 
3.5.4 are given in Table 3.5.1. 

Table 3.5.1 

3.6 - Earth's contribution to solar motion 
The solar position due exclusively to the Earth is given by the equations: 

 
2 2

(2, ) (2, )( ) ; ( ) [ ]xe t ye txesEa t AU yesEa t AU km
q q

= − ⋅ = − ⋅   (3.6.1) 

and heir graphical representation is given in Fig. 3.6.1. First-order derived distribution of the 
solar position due to the Earth is given by the equations: 

    ( ) ( ) ( ) ( )( ) ; ( )xesEa t xesEa t t yesEa t yesEa t t kmvxesEa t vyesEa t dayNd Nd
− − ∆ − − ∆  = =   

  (3.6.2) 

where xesEa(t) and yesEa(t) are given by equations 3.6.1, and vxesEa(t) and vyesEa(t) are the 
components of the solar orbital velocity due to the Earth, given by equations 3.6.2 and 
represented in Fig. 3.6.2. Second-order derived distribution of the solar position due to the 
Earth (solar orbital acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesEa t vxesEa t t vyesEa t vyesEa t t kmaxesEa t ayesEa t dayNd Nd

− − ∆ − − ∆  = =   
   (3.6.3) 

where vxesEa(t) and vyesEa(t) are given by equations 3.6.2, and axesEa(t) and ayesEa(t) are 
the components of the solar orbital acceleration due to the Earth represented in Fig. 3.6.3: 

 
Fig. 3.6.1 Solar position due to the Earth 

Frequency Amplitude Comments 
f1=1.68475e-008 6.6435e-007 fMa1 
f2=3.3695e-008 7.6489e-008 fMa2=2fMa1 qMa=8.85 
f3=5.05425e-008 2.8241e-009 fMa3=3fMa1 
f4=6.739e-008 5.8027e-010 fMa4=4fMa1 
f5=8.42375e-008 7.0792e-011 fMa5=5fMa1 



 
Fig. 3.6.2 Solar orbital velocity due to Earth 

 
Fig. 3.6.3 Solar orbital acceleration due to Earth 

The module of solar orbital acceleration is 2 2( ) ( ) ( )aesEa t axesEa t ayesEa t= +  the 
spectrum of which is given in Fig. 3.6.4: 

 
Fig. 2.6.4 aesEa pg spectrum 

The spectral components of Earth’s contribution to solar orbital acceleration aesEa(t), 
are given in Table 3.6.1. 

Table 3.6.1 
 

3.7 - Venus' contribution to solar motion 
The solar position due exclusively to Venus is given by the equations: 

 
1 1

(1, ) (1, )( ) ; ( ) [ ]xe t ye txesVe t AU yesVe t AU km
q q

= − ⋅ = − ⋅   (3.7.1) 

and their graphical representation is given in Fig. 3.7.1. First-order derived distribution of the 
solar position due to Venus is given by the equations: 

    ( ) ( ) ( ) ( )( ) ; ( )xesVe t xesVe t t yesVe t yesVe t t kmvxesVe t vyesTe t dayNd Nd
− − ∆ − − ∆  = =   

  (3.7.2) 

Frequency Amplitude Comments 
f1=3.1688e-008 2.6756e-006 fEa1 
f2=6.3376e-008 5.6677e-008 fEa2=2fEa1  qEa=47.21 
f3=9.5064e-008 3.8158e-010 fEa3=3fEa1 
f4=1.2675e-007 1.4964e-011 fEa4=4fEa1 
f5=1.5844e-007 3.4538e-013 fEa5=5fEa1 



where xesVe(t) and yesVe(t) are given by equations 3.7.1, and vxesVe(t) and vyesVe(t) are the 
components of the solar orbital velocity due to Venus, given by equations 3.7.2 and 
represented in Fig. 3.7.2. 

 
Fig. 3.7.1 Solar position due to Venus 

 
Fig. 3.7.2 Solar orbital velocity due to Venus 

Second-order derived distribution of the solar position due to Venus (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesVe t vxesVe t t vyesVe t vyesVe t t kmaxesVe t ayesVe t dayNd Nd

− − ∆ − − ∆  = =   
   (3.7.3) 

where vxesVe(t) and vyesVe(t) are given by equations 3.7.2, and axesVe(t) and ayesVe(t) are 
the components of the solar orbital acceleration due to Venus represented in Fig. 3.7.3: 

 
Fig. 3.7.3 Solar orbital acceleration due to Venus 

The module of solar orbital acceleration is 2 2( ) ( ) ( )aesVe t axesVe t ayesVe t= + the 
spectrum of which is given in Fig. 3.7.4: 

 
Fig. 3.7.4 aesVe pg spectrum 

The spectral components of Venus' contribution to solar orbital acceleration aesVe(t), are 
given in Table 3.7.1. 

Table 3.7.1 
Frequency Amplitude Comments 

f1=5.1509e-008 1.8261e-006 fVe1 
f2=1.0302e-007 1.7348e-008 fVe2=2fVe1  qVe=105.26 
f3=1.5453e-007 5.3764e-011 fVe3=3fVe1 
f4=2.0604e-007 9.2124e-013 fVe4=4fVe1 



3.8 - Mercury's contribution to solar motion 
The solar position due exclusively to Mercury is given by the equations: 

 
0 0

(0, ) (0, )( ) ; ( ) [ ]xe t ye txesMe t AU yesMe t AU km
q q

= − ⋅ = − ⋅   (3.8.1) 

and their graphical representation is given in Fig. 3.8.1. First-order derived distribution of the 
solar position due to Mercury is given by the equations: 

  ( ) ( ) ( ) ( )( ) ; ( )xesMe t xesMe t t yesMe t yesMe t t kmvxesMe t vyesMe t dayNd Nd
− − ∆ − − ∆  = =   

  (3.8.2) 

where xesMe(t) and yesMe(t) are given by equations 3.8.1, and vxesMe(t) and vyesMe(t) are 
the components of the solar orbital velocity due to Mercury, given by equations 3.8.2 and 
represented in Fig. 3.8.2. 

 
Fig. 3.8.1 Solar position due to Mercury 

 
Fig. 3.8.2 Solar orbital velocity due to Mercury 

Second-order derived distribution of the solar position due to Mercury (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesMe t vxesMe t t vyesMe t vyesMe t t kmaxesMe t ayesMe t dayNd Nd

− − ∆ − − ∆  = =   
   (3.8.3) 

where vxesMe(t) and vyesMe(t) are given by equations 3.8.2, and axesMe(t) and ayesMe(t) 
are the components of the solar orbital acceleration due to Mercury represented in Fig. 3.8.3. 

The module of solar orbital acceleration is 2 2( ) ( ) ( )aesMe t axesMe t ayesMe t= + the 
spectrum of which is given in Fig. 3.8.4. 

 
Fig. 3.8.3 Solar orbital acceleration due to Mercury 



 
Fig. 3.8.4 aesMe pg spectrum 

The spectral components of Mercury’s contribution to solar orbital acceleration 
aesMe(t), are given in Table 3.8.1. 

Table 3.8.1 
Frequency Amplitude Comments 

f1=1.3157e-007 1.0364e-005 fMe1 
fa=2.0035e-007 1.3783e-011 fMe2-fEa2 
f2=2.6314e-007 2.1445e-006 fMe2=2fMe1  qMe=4.83 
fb=3.3192e-007 2.7668e-012 fMe3-fEa2 
f3=3.9471e-007 1.6356e-007 fMe3=3fMe1 
fc=4.6349e-007 9.0956e-012 fMe4-fEa2 
f4=5.2628e-007 7.5607e-008 fMe4=4fMe1 
fd=5.9506e-007 8.0831e-010 fMe5-fEa2 
f5=6.5784e-007 1.7709e-008 fMe5=5fMe1 

Comment 3.8.1: From the table above we can observe both the spectral components due to the 
ellipticity of the Mercury orbit (components fMe1 ... fMe5), and the components fa ... fd due to the 
influence of the Earth.  

4 - The amplitude of the spectral components depends on the 
eccentricity of the orbit 

Let us summarize the spectral components of the planetary contributions to solar motion, 
specifying the eccentricity of the orbit and adding the orbital frequencies8 with the suffix 0. 

Table 4.1 - Neptune, e=0.00895439 
Name Frequency [Hz] Amplitude [A] Comments 
fNe0 1.92295E-10   
fNe1 1.9277e-010 2.3993e-008  
fNe2 3.8554e-010 2.8049e-010 2fNe1 qa7=85.5 
fNe3 5.7567e-010 1.013e-012 3fNe1 

Table 4.2 - Uranus, e=0.04716771 
Name Frequency [Hz] Amplitude [A] Comments 
fUr0 3.771850E-10   
fUr1 3.7498e-010 2.744e-007  
fUr2 7.5523e-010 1.6678e-008 2fUr1  qa6=16.45 
fUr3 1.1302e-009 3.1394e-010 3fUr1 
fUr4 1.5105e-009 3.1352e-011 4fUr1 

Table 4.3 - Saturn, e=0.05415060 
Name Frequency [Hz] Amplitude [A] Comments 
fSa0 1.07574E-09   
fSa1 1.0774e-09 9.5205e-006  
fSa2 2.1495e-09 7.6037e-007 2fSa1 qa5=12.52 
fSa3 3.2269e-09 1.8746e-008 3fSa1 
fSa4 4.299e-09 2.4874e-009 4fSa1 
fSa5 5.3764e-09 2.1108e-010 5fSa1 

Table 4.4 - Jupiter, e=0.04839266 
Name Frequency [Hz] Amplitude [A] Comments 
fJu0 2.6714E-09   
fJu1 2.6724e-09 8.0105e-005  
fJu2 5.3447e-09 4.327e-006 2fJu1  qa4=18.5 
fJu3 8.0118e-09 7.8814e-008 3fJu1 

                                                 
8 The planetary orbital frequency (also called natural planetary frequency) in Hz is the inverse of the 

planetary period expressed in seconds. 



fJu4 1.0684e-08 8.0121e-009 4fJu1 
fJu5 1.3357e-08 4.7326e-010 5fJu1 

Table 4.5 - Mars, e=0.09341233 
Name Frequency [Hz] Amplitude [A] Comments 
fMa0 1.684776E-08   
fMa1 1.68475E-08 6.6435e-07  
fMa2 3.3695E-08 7.6489e-08 2fMa1  qa3=8.85 
fMa3 5.054250E-08 2.8241e-09 3Ma1 
fMa4 6.739E-08 5.8027e-10 4fMa1 
fMa5 8.423750E-08 7.0792e-11 5fMa1 

Table 4.6 - Earth, e=0.01671022 
Name Frequency [Hz] Amplitude [A] Comments 
fEa0 3.168757E-08   
fEa1 3.16881E-08 2.6756e-06  
fEa2 6.33762E-08 5.6677e-08 2fEa1  qa2=47.21 
fEa3 9.50643E-08 3.8158e-10 3fEa1 
fEa4 1.26752E-07 1.4964e-11 4fEa1 
fEa5 1.58435E-07 3.4538e-13 5fEa1 

Table 4.7 - Venus, e=0.00677323 
Name Frequency [Hz] Amplitude [A] Comments 
fVe0 5.150878E-08   
fVe1 5.1509E-08 1.8261e-06  
fVe2 1.03018E-07 1.7348e-08 2fVe1  qa1=105.26 
fVe3 1.54527E-07 5.3764e-11 3fVe1 
fVe4 2.06036E-07 9.2124e-13 4fVe1 

Table 4.8 - Mercury, e=0.20563069 
Name Frequency [Hz] Amplitude [A] Comments 
fMe0 1.315699E-07   
fMe1 1.3157e-07 1.0364e-05  
fMe2 2.63143E-07 2.1445e-06 2fMe1 qa0=4.82 
fMe3 3.94707e-07 1.6452e-07 3fMe1 
fMe4 5.26281e-07 7.6224e-08 4fMe1 
fMe5 6.57855e-07 1.7893e-08 5fMe1 

Comment 4.1: The data in tables 4.1 ... 4.8 are the basis for calculating the positive frequency 
differences that we will use to identify the components resulting from the spectral analysis, components 
that we will find in Table 5.1. With the data from the above tables, 8 matrices are constructed with which 
the positive differences of two terms from different matrices are calculated. The result is an Excel file with 
730 possible components, of which the 190 frequencies in table 5.1 can be found.  

From tables 4.1 ... 4.8 we can note that there is a direct dependence relation between the 
value of the eccentricity e of the orbit of a given planet and the number of harmonics9 of the 
contribution of that planet to the solar motion. There is also (see Table 4.9) an inverse 
dependence relationship between the value of the eccentricity e (in ascending order in the 
table) and the ratio of the amplitudes of the first two spectral components qai . 

 
Table 4.9 

Eccentricity e Planet qai  Comment 
0.00677323 Venus 105.26  
0.00895439 Neptune 85.5  
0.01671022 Earth 47.21  
0.04716771 Uranus 16.45  Uranus anomaly 10 
0.04839266 Jupiter 18.5   
0.0541506 Saturn 12,52    
0.09341233 Mars 8.85  
0.20563069 Mercury 4.82  

                                                 
9 We are talking about harmonics with important amplitudes. 
10 According to the value of the eccentricity the value qai for Uranus should be between 47 and 18. The 

reason why it turned out to be a very different value is not known. 



5 - The spectral components of the solar aes parameter over a time 
interval of 60 centuries for all planets. 

Next we will analyse the spectral components of the solar orbital acceleration over the 
time interval of the validity of the ephemerides table (60 centuries), without the data from 
Table 1.5.1.B. The aes spectrum under these conditions is given in Fig. 5.1: 

 
Fig. 5.1 Aes spectrum for all planets 

For a more detailed image the same spectrum, but expanded in Fig. 5.2, 5.3 and 5.4, it is 
worth observing the frequency ranges at the bottom of the spectrum. 

 
Fig. 5.2 Aes spectrum for all planets zoom 1 

 
Fig. 5.3 Aes spectrum for all planets zoom 2 

 
Fig. 5.4 Aes spectrum for all planets zoom 3 

The important spectral components in terms of amplitude identified in the spectrum of 
Fig. 5.1 are given in Table 5.1, in which the ellipsis (...) indicate an interval with unidentified 
components. In column 4 (components) the name of the harmonic or the positive difference 
of harmonics of the planetary contributions to the solar parameter aes are entered, and in 
column 5 the name of the formant which the respective frequency is part of. 

The amplitude of the components does not have units of measurement, it being useful 
only when comparing the values between them. Spectral analysis was also done by filtering 
the data through a Gaussian window. 

Table 5.1 
No. Frequency [Hz] Amplitude Components Formant11 
f01 1.9277E-10 6.0317E-08 fNe1  
f02 3.2216E-10 1.3196E-08 fSa1-fUr2  
f03 3.7498E-10 1.2779E-07 fUr1  

                                                 
11 Regarding the notation of the formants, see par. 6.2 



f04 3.8554E-10 6.5233E-08 fNe2  
f05 4.3307E-10 2.1454E-10 fUr4-fSa1  
f06 5.0173E-10 3.2384E-07 fSa1-fNe3  
f07 5.2285E-10 9.3117E-06 fJu1-fSa2  
f08 5.5454E-10 1.0426E-06 fUr3-fNe3  
f09 5.7567E-10 1.5136E-08 fNe3  
f10 6.3904E-10 1.5507E-10 fSa2-fUr4  
f11 6.9186E-10 8.7879E-08 fSa1-fNe2  
f12 7.0242E-10 1.1846E-07 fSa1-fUr1  
f13 7.5523E-10 1.2400E-08 fUr2  
f14 8.8199E-10 6.4734E-08 fSa0-fNe1  
f15 9.3480E-10 4.0132E-10 fUr4-fNe3  
f16 9.6649E-10 6.6169E-09 fVe1-fMa3  
f17 1.0404E-09 7.2839E-08 fJu2-fSa4  
f18 1.0774E-09 3.2848E-06 fSa1  
f19 1.1302E-09 6.3364E-10 fUr3  
f20 1.1619E-09 7.1672E-10 fJu0-fUr4  
f21 1.3151E-09 3.7548E-11 fUr4-fNe1  
f22 1.3943E-09 5.0370E-09 fSa2-fUr2  
f23 1.5105E-09 4.8875E-11 fUr4  
f24 1.5422E-09 2.1305E-08 fJu0-fUr3  
f25 1.5950E-09 7.8977E-05 fJu1-fSa1 GAf1 
f26 1.7745E-09 1.6899E-08 fSa2-fUr1  
f27 1.9171E-09 2.8213E-07 fJu0-fUr2  
f28 1.9594E-09 8.3375E-09 fSa2-fNe1  
f29 2.1178E-09 4.0970E-07 fJu2-fSa3  
f30 2.1495E-09 4.1631E-07 fSa2  
f31 2.2921E-09 2.8750E-06 fJu1-fUr1 GAf2 
f32 2.4770E-09 1.3846E-06 fJu1-fNe1 GAf3 
f33 2.6724E-09 7.9417E-05 fJu1 GAf4 
f34 2.8466E-09 1.7795E-09 fSa3-fUr0  
f35 3.0315E-09 9.0140E-10 fSa3-fNe1  
f36 3.1899E-09 1.6129E-06 fJu2-fSa2 GBf1 
f37 3.8924E-09 1.2347E-07 fJu2-fUr1-fSa1 GBf2 
f38 4.0772E-09 5.9679E-08 fJu2-fNe1-fSa1 GBf3 
f39 4.2092E-09 1.4211E-09 fJu2-fUr3  
f40 4.2673E-09 3.6127E-06 fJu2-fSa1 GBf4, GCf1 
f41 4.5895E-09 1.5827E-08 fJu2-fUr2  
f42 4.7849E-09 6.7322E-08 fJu3-fSa3  
f43 4.9645E-09 1.3612E-07 fJu2-fUr1 GCf2 
f44 5.1493E-09 6.5549E-08 fJu2-fNe1 GCf3 
f45 5.3447E-09 4.3231E-06 fJu2 GCf4 
f46 5.8623E-09 7.7154E-08 fJu3-fSa2 GDf1 



f47 6.4168E-09 1.1821E-08 fJu4-fSa4  
f48 6.5594E-09 6.0308E-09 fJu3-fUr1-fSa1 GDf2 
f49 6.7443E-09 2.8969E-09 fJu3-fNe1-fSa1 GDf3 
f50 6.9397E-09 1.7843E-07 fJu3-fSa1 GDf4, GEf1 
f51 7.2407E-09 1.5209E-09 fJu3-fUr2  
f52 7.4573E-09 3.5003E-09   
f53 7.5999E-09 1.5159E-08 fJu3-fUr1 GEf2 
f54 7.6368E-09 6.9195E-09   
f55 7.8217E-09 3.3276E-09 fJu3-fNe1 GEf3 
f56 8.0118E-09 8.0243E-08 fJu3 GEf4, GFf1 
f57 8.8357E-09 7.8850E-09 fMa1-fJu3  
f58 9.1948E-09 1.1349E-07 fJu4-fUr4 GFf4 
f59 9.6068E-09 3.6250E-09 fJu4-fUr3  
f60 9.9078E-09 6.9750E-09 fJu4-fUr2 GGf1 
f61 1.0103E-08 1.0103E-08 fJu4-fNe3  
f62 1.0298E-08 1.0272E-08 fJu4-fNe2 GGf2 
f63 1.0462E-08 2.6156E-10 fJu4-fNe1  
f64 1.0790E-08 5.3963E-09 fJu4 GGf3 
f65 1.1503E-08 1.5134E-07 fMa1-fJu2 Maf1 
f66 1.2580E-08 1.5214E-07 fMa1-fSa4 Maf2 
f67 1.2834E-08 1.9226E-10 fEa2-fMa3  
f68 1.3658E-08 1.9184E-08 fMa1-fSa3  
f69 1.4175E-08 3.4446E-06 fMa1-fJu1 Maf3 
f70 1.4698E-08 1.9530E-08 fMa1-fSa2  
f71 1.4841E-08 1.5252E-07 fEa1-fMa1  
f72 1.5358E-08 8.6682E-10 fMa1-fUr4  
f73 1.5770E-08 1.5310E-07 fMa1-fSa1 Maf4 
f74 1.6076E-08 1.1072E-09 fMa1-fUr2  
f75 1.6219E-08 1.9206E-09 fMa1-fNe3  
f76 1.6436E-08 6.9420E-09 fMa1-fUr1  
f77 1.6631E-08 1.6098E-08 fMa1-fNe1  
f78 1.6848E-08 1.5371E-07 fMa1 Maf5 
f79 1.7814E-08 4.2939E-08 fVe1-fMa2  
f80 1.9821E-08 5.1482E-06 fVe1-fEa1  
f81 2.0898E-08 3.1139E-08 fEa1-fJu4  
f82 2.3011E-08 1.5747E-08 fMa2-fJu4  
f83 2.3676E-08 1.6513E-07 fEa1-fJu3  
f84 2.5683E-08 1.0670E-09 fMa2-fJu3  
f85 2.6343E-08 3.4216E-06 fEa1-fJu2 Eaf1 
f86 2.7421E-08 3.3538E-06 fEa1-fSa4 Eaf2 
f87 2.7796E-08 3.6026E-09 fVe3-fEa4  
f88 2.8498E-08 4.0884E-07 fEa1-fSa3  
f89 2.9016E-08 7.6631E-05 fEa1-fJu1 Eaf3 



f90 2.9401E-08 8.8963E-09 fMa2-fSa4  
f91 2.9539E-08 4.1671E-07 fEa1-fSa2  
f92 3.0611E-08 3.4374E-06 fEa1-fSa1 Eaf4 
f93 3.1023E-08 6.3130E-07 fMa2-fJu1  
f94 3.1308E-08 1.2393E-07 fEa1-fUr1  
f95 3.1688E-08 3.3787E-06 fEa1 Eaf5 
f96 3.2206E-08 8.4673E-08 fMa2-fUr4  
f97 3.2618E-08 2.8110E-08 fMa2-fSa1  
f98 3.3695E-08 2.8194E-08 fMa2  
f99 3.4661E-08 2.3486E-07 fVe1-fMa1  
f100 3.6505E-08 1.1237E-09 fMe1-fEa3  
f101 3.9642E-08 6.1020E-09 fVe2-fEa2  
f102 4.0883E-08 7.8851E-09 fVe1-fJu4  
f103 4.3497E-08 2.5799E-07 fVe1-fJu3  
f104 4.4569E-08 2.3679E-07 fEa3-fMa3  
f105 4.6164E-08 5.1759E-06 fVe1-fJu2 Vef1 
f106 4.6545E-08 1.9189E-07 fEa2-fMa1  
f107 4.7242E-08 5.1709E-06 fVe1-fSa4 Vef2 
f108 4.7759E-08 2.3682E-07 fMa3-fJu1  
f109 4.8319E-08 6.4081E-07 fMa3-fSa2  
f110 4.8837E-08 1.1721E-04 fVe1-fJu1 Vef3 
f111 4.9359E-08 6.4764E-07 fVe1-fSa2  
f112 4.9914E-08 6.7901E-07 fVe1-fUr4  
f113 5.0432E-08 5.2159E-06 fVe1-fSa1 Vef4 
f114 5.1134E-08 1.9128E-07 fVe1-fUr1  
f115 5.1509E-08 5.2981E-06 fVe1 Vef5 
f116 5.5359E-08 7.3247E-08 fEa2-fJu3  
f117 5.6436E-08 2.1264E-07 fMa4-fJu4  
f118 5.8031E-08 1.6051E-06 fEa2-fJu2 Ea2f1 
f119 5.9109E-08 1.2620E-07 fEa2-fSa4 Ea2f2 
f120 6.0704E-08 2.6841E-06 fEa2-fJu1 Ea2f3 
f121 6.2299E-08 1.2204E-07 fEa2-fSa1 Ea2f4 
f122 6.3012E-08 2.1797E-07 fEa2-fUr1  
f123 6.3012E-08 2.1797E-07 fMa4-fSa4  
f124 6.3376E-08 1.1592E-07 fEa2 Ea2f5 
f125 6.4718E-08 6.1990E-09 fMa4-fJu1  
f126 6.7063E-08 2.3101E-08 fMa4-fUr1  
f127 6.8193E-08 3.9538E-08 fMe1-fEa2  
f128 7.1330E-08 7.0599E-08 fVe2-fEa1  
f129 7.6257E-08 6.5869E-07 fEa4-fMa3  
f130 8.0060E-08 1.7808E-06 fMe1-fVe1  
f131 8.7047E-08 6.6993E-08 fEa3-fJu3  
f132 8.9720E-08 1.1483E-07 fEa3-fJu2 Ea3f1 



f133 9.0433E-08 6.1926E-09 fEa3-fSa4 Ea3f2 
f134 9.1315E-08 5.3967E-09 fVe3-fEa2  
f135 9.2392E-08 7.7980E-08 fEa3-fJu1 Ea3f3 
f136 9.3406E-08 2.3068E-08 fEa3-fUr4  
f137 9.4483E-08 5.4836E-08 fEa3-fNe3  
f138 9.5006E-08 1.6941E-07 fVe2-fJu3  
…     
f139 9.7673E-08 3.7820E-06 fVe2-fJu2 Ve2f1 
f140 1.0035E-07 1.6052E-06 fVe2-fJu1 Ve2f3 
f141 1.0194E-07 7.1565E-08 fVe2-fSa1 Ve2f4 
f142 1.0302E-07 7.3361E-08 fVe2 Ve2f5 
f143 1.0954E-07 1.9129E-07 fEa4-fMa1  
f144 1.1472E-07 5.3270E-08 fMe1-fMa1  
f145 1.1606E-07 3.4905E-09 fEa4-fJu4  
f146 1.1874E-07 7.2916E-09 fEa4-fJu3  
f147 1.2141E-07 5.4194E-09 fEa4-fJu2  
f149 1.2243E-07 4.7765E-09 fEa4-fSa4  
f150 1.2356E-07 5.9976E-08 fMe1-fJu3  
f151 1.2463E-07 5.2540E-08 fEa4-fSa2  
f152 1.2623E-07 1.1361E-06 fMe1-fJu2 Mef1 
f153 1.2730E-07 1.1528E-06 fMe1-fSa4 Mef2 
f154 1.2890E-07 2.5984E-05 fMe1-fJu1 Mef3 
f155 1.3049E-07 1.1503E-06 fMe1-fSa1 Mef4 
f156 1.3157E-07 1.1064E-06 fMe1 Mef5 
f157 1.4651E-07 2.3864E-07 fVe3-fJu3  
f158 1.4918E-07 1.0009E-07 fVe3-fJu2  
f159 1.5185E-07 1.6223E-08 fVe3-fJu1  
f160 1.5411E-07 1.5694E-08 fVe3-fNe2  
f161 1.6058E-07 1.4572E-07 fMe2-fVe2  
f162 1.9535E-07 1.9710E-08 fMe2-fMa4  
f163 1.9976E-07 1.4683E-08 fMe2-fEa2  
f164 2.1163E-07 6.5962E-07 fMe2-fVe1  
f165 2.3145E-07 4.2599E-07 fMe2-fEa1  
f166 2.4064E-07 2.8606E-08 fMe3-fVe3  
f167 2.4629E-07 1.9804E-08 fMe2-fMa1  
f168 2.5513E-07 1.3994E-08 fMe2-fJu3  
f169 2.5780E-07 3.8931E-07 fMe2-fJu2 Me2f1 
f170 2.6047E-07 9.5571E-06 fMe2-fJu1 Me2f3 
f171 2.6207E-07 4.2197E-07 fMe2-fSa1 Me2f4 
f172 2.6314E-07 4.1113E-07 fMe2 Me2f5 
f173 3.4320E-07 1.9521E-07 fMe3-fVe1  
f174 3.6302E-07 1.2565E-07 fMe3-fEa1  
f175 3.7786E-07 5.8829E-09 fMe3-fMa1  



f176 3.8937E-07 1.4500E-07 fMe3-fJu2 Me3f1 
f177 3.9203E-07 2.8085E-06 fMe3-fJu1 Me3f3 
f178 3.9471E-07 1.2476E-07 fMe3 Me3f5 
f179 4.2372E-07 1.6211E-08 fMe4-fVe2  
f180 4.7477E-07 2.1981E-08 fMe4-fVe1  
f181 4.9459E-07 1.4104E-08 fMe4-fEa1  
f182 5.2094E-07 6.4344E-08 fMe4-fJu2 Me4f1 
f183 5.2361E-07 3.2016E-07 fMe4-fJu1 Me4f3 
f184 5.2520E-07 1.4996E-08 fMe4-fSa1 Me4f4 
f185 5.2627E-07 8.6946E-09 fMe4 Me4f5 
f186 6.0634E-07 2.3394E-09 fMe5-fVe1  
f187 6.2616E-07 1.5347E-09 fMe5-fEa1  
f188 6.5251E-07 2.0451E-08 fMe5-fJu2 Me5f1 
f189 6.5518E-07 3.5215E-08 fMe5-fJu1 Me5f3 
f190 6.5784E-07 1.3956E-09 fMe5 Me5f5 

 
Table 5.1 with the spectral components of the solar parameter aes reveals to us a lot of 

“secrets” of the processes that take place in our planetary system. The first and most 
important is that the motion of an AB in the planetary system (including the Sun) is 
influenced by the motion of the outer AB. For the telluric planets, the influence of Jupiter 
(the strongest), Saturn, followed by Uranus and Neptune is obvious.  

In table 5.2 we extracted from the series of spectral components above the important 
ones, which we ordered by amplitude, thus having the possibility to observe and understand 
the weight of the planets at the solar orbital acceleration. In column 5 of the table we see the 
percentage share of the planetary contribution relative to the sum of all these contributions to 
the solar parameter aes. We observe the major contribution of both Jupiter and the telluric 
planets12 (Mars excluded), especially of Venus. 

Table 5.2 
No. Combination Frequency 

[Hz] 
aes amplitude rel. val. [%] 

1 fVe1-fJu1 4.8837E-08 1.1721E-04 11.702 
2 fJu1 2.6724E-09 7.9417E-05 7.929 
3 fJu1-fSa1 1.5950E-09 7.8977E-05 7.885 
4 fEa1-fJu1 2.9016E-08 7.6631E-05 7.651    
5 fMe1-fJu1 1.2890E-07 2.5984E-05 2.594 
6 fMe2-fJu1 2.6047E-07 9.5571E-06 0.954 
7 fJu1-fSa2 5.2285E-10 9.3117E-06 0.93 
8 fVe1 5.1509E-08 5.2981E-06 0.529 
9 fVe1-fSa1 5.0432E-08 5.2159E-06 0.521 
10 fVe1-fJu2 4.6164E-08 5.1759E-06 0.517 
11 fVe1-fSa4 4.7242E-08 5.1709E-06 0.516 
12 fVe1-fEa1 1.9821E-08 5.1482E-06 0.514 
13 fJu2 5.3447E-09 4.3231E-06 0.432 
14 fVe2-fJu2 9.7673E-08 3.7820E-06 0.378 

                                                 
12 When we talk about the major contribution of the telluric planets, we refer exclusively to the solar 

parameter aes.  



15 fJu2-fSa1 4.2673E-09 3.6127E-06 0.361 
16 fMa1-fJu1 1.4175E-08 3.4446E-06 0.344 
17 fEa1-fSa1 3.0611E-08 3.4374E-06 0.343 
18 fEa1-fJu2 2.6343E-08 3.4216E-06 0.342 
19 fEa1 3.1688E-08 3.3787E-06 0.337 
20 fEa1-fSa4 2.7421E-08 3.3538E-06 0.335 
21 fSa1 1.0774E-09 3.2848E-06 0.328 
22 fJu1-fUr1 2.2921E-09 2.8750E-06 0.287 
23 fMe3-fJu1 3.9203E-07 2.8085E-06 0.28 
24 fEa2-fJu1 6.0704E-08 2.6841E-06 0.268 
25 fMe1-fVe1 8.0060E-08 1.7808E-06 0.178 

6 - Formants 

6.1 - Introduction 
The frequency distribution of the value of a solar parameter resulting from the FFT 

spectral analysis is a spectrum. In this spectrum we observe certain forms (hence the name of 
formants), which are repeated and which represent invariant relations between certain 
spectral components. 

Comment 6.1.1: In the Explanatory Dictionary of the Romanian Language the term formant is 
defined as an “area of maximum relevance of an acoustic spectrum”, but being also a spectrum, the same 
term can also be used in the case of the spectral components of the solar motion. 

From the analysis made so far, three types of formants resulted: 
- Formants of giant planets; 
- Formants of the telluric planets; 
- Modulation formants. 

The formants of the giant planets contain invariant relations between the spectral 
components of the parameters of the Sun’s motion caused only by the motions of the giant 
planets, and the formants of the telluric planets contain invariant relations between the 
spectral components of the solar parameters caused by the telluric planets and the giant 
planets. The modulation formants contain the harmonics of a central frequency (the 
equivalent of the carrier to the classical amplitude modulation of a signal), components 
symmetrically arranged at distances equal to the frequency of the modulating signal. 

6.2 - The formants of the giant planets 
The formants of the giant planets are presented in the clearer version of ignoring the 

perturbations induced by Table 1.5.1.B in their motion, in which case the solar spectrum is 
much clearer. In this case the solar spectrum aes is given in Fig. 6.2.1 (Fig. 5.2 on which the 
areas belonging to formants A ... F were delimited, with the components indicated in Table 
5.1). The notation of the formants for the giant planets begins with the letter G followed by 
the indicative of the formant (A...F) and that of the frequency. For telluric planets the name of 
the formant is that of the planet followed by the frequency indicator. 



 
Fig. 6.2.1 

Table 6.2.1 The formants of the giant planets 
No. A Formant  A Components  B Formant  B Comp. C Formant  C Comp. 
f1 1.5950e-09 fJu1-fSa1  3.1900e-09 f1+f1 fJu2-fSa2 4.2674e-09 fJu2-fSa1 
f2 2.2974e-09 fJu1-fUr1  3.8924e-09 f2+f1 fJu2-fUr1-fSa1 4.9645e-09 fJu2-fUr1 
f3 2.4796e-09 fJu1-fNe1  4.0746e-09 f3+f1 fJu2-fNe1-fSa1 5.1493e-09 fJu2-fNe1 
f4 2.6724e-09 fJu1  4.2674e-09 f4+f1 fJu2-fSa1 5.3447e-09 fJu2 

No. D Formant  D Comp. E Formant E Comp. F Formant F Comp. 
f1 5.8623e-09 fJu3-fSa2  6.9397e-09 fJu3-fSa1 8.0118e-09 fJu3 
f2 6.5594e-09 fJu3-fUr1-fSa1 7.5999e-09 fJu3-fUr1 8.8357e-09 fMa1-fJu3 
f3 6.7443e-09 fJu3-fNe1-fSa1 7.8217e-09 fJu3-fNe1 9.0892e-09  
f4 6.9397e-09 fJu3-fSa1 8.0118e-09 fJu3 9.1948e-09 fJu4-fUr4 
We notice that the frequencies (spectral components) that enter a formant of the giant 

planets are four in number, and the types of formants are six in number, marked with A, B, C, 
D, E and F in Table 6.2.1 and Fig. 6.2.1. Table 6.2.1 indicates the four frequencies, the 
frequency value, and the comment columns indicate the composition of each frequency. 

Comment 6.2.1: The situation of the formants is a bit more complicated because their overlaps 
appear. For example, formant C partially overlaps B, formant D partially overlaps E, and in formant F a 
component of the Martian formant appears. There is also a formant of the giant planet - the formant G - 
not included in Table 6.2.1 which contains components formed with fJu4 (f60, f62, f64) and which is 
partially overlapping with the Mars formant. As a general observation regarding the formants of the giant 
planets, taking into account the information regarding the formants of the telluric planets where higher 
order formants will also appear, we could say that in fact the formants of the giant planets are higher order 
formants of Jupiter. 

6.3 - The formants of the telluric planets 
The structure of the formants of the telluric planets is the same for all planets of this 

type, but as an example we chose only two clearer ones, namely those of the planets Earth 
and Venus, represented in Fig. 6.3.1 (an enlarged fragment from Fig. 5.3): 

 
Fig. 6.3.1 

 



Table 6.3.1  The formants of the telluric planets 
No. Ma Formant  Ma Comp.  Ea Formant  Ea Comp.  Ve Formant  Ve Comp.  
f1 1.15028e-08 fMa1-fJu2 2.63434e-08 fEa1-fJu2 4.61643e-08 fVe1-fJu2 
f2 1.25485e-08 fMa1-fSa4 2.73838e-08 fEa1-fSa4 4.72786e-08 fVe1-fSa4 
f3 1.41751e-08 fMa1-fJu1 2.90157e-08 fEa1-fJu1 4.88366e-08 fVe1-fJu1 
f4 1.57701e-08 fMa1-fSa1 3.06107e-08 fEa1-fSa1 5.04316e-08 fVe1-fSa1 
f5 1.68475e-08 fMa1 3.16881e-08 fEa1 5.15090e-08 fVe1 

Table 6.3.1 Continued 
No. Me Formant  Me Comp.  Amplitude 

f1 1.26229e-07 fMe1-fJu2 1.1307e-06 
f2 1.27339e-07  fMe1-fSa4 6.8178e-07 
f3 1.28902e-07 fMe1-fJu1 2.4377e-05 
f4 1.30497e-07 fMe1-fSa1 9.597e-07 
f5 1.31569e-07 fMe1 1.1614e-06 

In the formants of the telluric planets there is a central component f3 in Table 6.3.1, with 
a frequency equal to the difference between the first harmonic of the planet and the first 
harmonic of Jupiter, this frequency having the highest amplitude within the formant. 

Comment 6.3.1: In table 6.3.1 the amplitudes of the components in the formant of Mercury are 
given for example, for the other planets they are omitted due to lack of space. However, the amplitude 
values for all formants are accessible in Table 5.1, where the components of the formants are indicated in 
the last column. In the case of the first three telluric planets (Me, Ve, Ea) we observe the appearance of 
higher order formants, reaching that for Mercury we have even a formant of order 5. Here we must note 
that the frequency resolution of the spectral analysis with the sampling period 8.36 days is not enough for 
the planet Mercury, which would need a shorter sampling period. 

6.4 - Modulation formants 
A modulation formant consists of a central component and several side components 

arranged symmetrically with respect to the central component. In Fig. 6.4.1 there is such an 
example, in which the central component is f25 (fJu1-fSa1)13 from Table 5.1, accompanied 
by the 5 symmetrical harmonics. This formant is in turn an element (f1a) of the formant A of 
the giant planets, represented in Fig. 6.2.1. 

 
Fig. 6.4.1 f25 formant 

7 - The enigma of the Table 1.5.1.B 

7.1 - The individual contributions of the giant planets according to Table 1.5.1.B 
In this case the mean anomaly M of the planet i as a function of time t is calculated with 

the equation: 

 
2 cos( ) sin( )M L b t c f t s f tϖ= − + ⋅ + ⋅ ⋅ + ⋅ ⋅   (7.1.1) 

where b, c, s, f  are given in Table 1.5.1.B reproduced below for convenience. 
Table 1.5.1.B 

Planet b c s f 
Ju -0.00012452 0.06064060 -0.35635438 38.35125 
Sa 0.00025899 -0.13434469 0.87320147 38.35125 
Ur 0.00058331 -0.97731848 0.17689245 7.67025 
Ne -0.00041348 0.68346318 -0.10162547 7.67025 

                                                 
13 Modulation formant appeared when using Table 1.5.1.B which determines an amplitude modulation of 

each spectral component. 



7.1.1 – Jupiter’s contribution to solar motion 
The solar position due exclusively to Jupiter in ecliptic coordinates is given by the 

equations: 

 
4 4

(4, ) (4, )( ) ; ( ) [ ]xe t ye txesJu t AU yesJu t AU km
q q

= − ⋅ = − ⋅   (7.1.1.1) 

and the graphical representation in Fig. 7.1.1.1: 

 
Fig. 7.1.1.1 The solar position due to Jupiter 

The first-order derived distribution of the solar position (solar velocity) due to Jupiter is 
given by the equations:  

( ) ( ) ( ) ( )( ) ; ( )xesJu t xesJu t t yesJu t yesJu t t kmvxesJu t vyesJu t dayNd Nd
− − ∆ − − ∆  = =   

  (7.1.1.2) 

where xesJu(t) and yesJu(t) are given by equations 7.1.1.1, and vxesJu(t) and vyesJu(t) are the 
components of the solar orbital velocity due to Jupiter and represented in Fig. 7.1.1.2: 

 
Fig. 7.1.1.2 The components of the solar orbital velocity due to Jupiter 

The module of the solar orbital velocity due to Jupiter is given by the equation 
2 2( ) ( ) ( )vesJu t vxesJu t vyesJu t= +  the representation of which is given in Fig. 7.1.1.3. 

 
Fig. 7.1.1.3 The module of the solar orbital velocity due to Jupiter 

The second-order derived distribution of the solar position due to Jupiter (solar orbital 
acceleration) is given by the equations:  

2
( ) ( ) ( ) ( )( ) ; ( )vxesJu t vxesJu t t vyesJu t vyesJu t t kmaxesJu t ayesJu t dayNd Nd

− − ∆ − − ∆  = =   
  (7.1.1.3) 

where vxesJu(t) and vyesJu(t) are given by the equations 7.1.1.2, and axesJu(t) and ayesJu(t) 
are the components of the solar orbital acceleration due to Jupiter and represented in Fig. 
7.1.1.4: 



 
Fig. 7.1.1.4 Components of solar orbital acceleration due to Jupiter 

The module of solar orbital acceleration 2 2( ) ( ) ( )aesJu t axesJu t ayesJu t= +  produced 
by Jupiter is shown in Fig. 7.1.1.5: 

 
Fig. 7.1.1.5 The module of the solar orbital acceleration due to Jupiter 

 
Fig. 7.1.1.6 aesJu pg spectrum 

The most important spectral components in terms of amplitude of the Jovian contribution 
to the solar aes resulting from Fig. 7.1.1.6 are given in Table 7.1.1.1. 

Table 7.1.1.1 
Frequency [Hz] Amplitude Comments 

fm=3.433e-011  923 years   
f1=2.6724e-009 7.7902e-005 fJu1 
f2=5.3447e-009 3.8539e-006 fJu2=2fJu1  qa=18.51  
f3=8.0171e-009 5.5423e-008 fJu3=3fJu1 
f4=1.0721e-008 4.3625e-009 fJu4=4fJu1 
f5=1.3325e-008 2.694e-010 fJu5=5fJu1 

Compared to the results of the analysis of Jupiter’s contribution presented in par. 3.1 
with the neglect of Table 1.5.1.B, we observe that in the case of using equation 7.1.1 there are 
notable differences only in the case of time distributions of solar orbital velocity and 
acceleration. We find that for both parameters there was a sinusoidal variation overlapping 
the value in the graphs in par. 3.1. This variation, following the spectral analysis, appears to 
us with the frequency fm in Table 7.1.1.1, to which a period of 923 years corresponds. Also 
the spectral components f1 ... f5 appear slightly modulated in amplitude14. 

7.1.2 – Saturn’s contribution to solar motion 
As we have seen in the case of Jupiter, and in the case of Saturn if we use the data in 

Table 1.5.1.B there are notable differences only between the graphs developed over time of 
the parameters of the solar orbital. In Fig. 7.1.2.1 we have the graph of the module of the 
solar orbital velocity due to Saturn, and in Fig. 7.1.2.2 the graph of the solar acceleration 
module. 

                                                 
14 The components of amplitude modulation appear to us if we make an extreme zoom of fig. 7.1.1.6. 



 
Fig. 7.1.2.1 The module of the solar orbital velocity due to Saturn 

 
Fig. 7.1.2.2 The module of solar orbital acceleration due to Saturn 

 
Fig. 7.1.2.3 aesSa spectrum 

Table 7.1.2.1 
Frequency [Hz] Amplitude Comments 

fm1=3.433e-011  923 years   
fm2=6.8658e-011  2fm1 
f1=1.0774e-009 7.557e-006 fJu1 
f2=2.1495e-009 2.7573e-007 fJu2=2fJu1  qa=27.4  
f3=3.2269e-009 2.1303e-009 fJu3=3fJu1 
f4=4.3043e-009 7.4496e-010 fJu4=4fJu1 
f5=5.3711e-009 6.8558e-011 fJu5=5fJu1 

In the case of the aesSa spectrum we notice that the modulation with fm is stronger than 
in the case of Jupiter (the second fm2 harmonic appears), and the spectral components f1 ... 
f5 appear to us clearly modulated in amplitude. 

Comment 7.1.2.1: In the aesSa spectrum a modulation formant becomes visible for each spectral 
component, in the centre of which there is a spectral component (f1 ... f5) and the equally spaced 
modulation harmonics. 

7.1.3 – Uranus’ contribution to solar motion 

 
Fig. 7.1.3.1 The module of the solar orbital velocity due to Uranus 



 
Fig. 7.1.3. 2 The module of solar orbital acceleration due to Uranus 

 
Fig. 7.1.3.3 aesUr spectrum 

Due to the fact that the sampling interval of 60 centuries includes only one period of the 
variation of the orbital parameters of the Sun caused by Uranus, the spectral analysis is 
impossible. Graph 7.1.3.1 estimates a period of about 5,000 years.  

Table 7.1.3.1 
Frequency Amplitude Comments 

fm3 ~1.0e-011  approx. 5000 
years 

 estimated graphically 

f1=3.7498e-010 2.6006e-007 fUr1 
f2=7.4467e-010 1.4022e-008 fUr2=2fUr1 qUr=18.55 
f3=1.1144e-009 2.3521e-010 fUr3=3fUr1 
f4=1.4893e-009 2.2034e-011 fUr4=4fUr1 

7.1.4 – Neptune’s contribution to solar motion 

 
Fig. 7.1.4.1 The module of the solar orbital velocity due to Neptune 

 
Fig. 7.1.4.2 The module of solar orbital acceleration due to Neptune 



 
Fig. 7.1.4.3 aesNe spectrum 

Due to the fact that the sampling interval of 60 centuries comprises only one period of 
the variation of the orbital parameters of the Sun caused by Neptune, the spectral analysis 
cannot highlight the modulation frequency. 

Table 7.1.4.1 
Frequency Amplitude Comments 

fm3 ~1.0e-011  approx. 5000 
years 

 estimated graphically 

f1=1.9541e-010 2.5754e-008 fNe1 
f2=3.9082e-010 2.6535e-010 fNe2=2Ne1 qNe=97.1 
f3=5.8623e-010 7.7001e-013 fNe3=3Ne1 

7.2 - The spectral components of the solar aes parameter for all planets with the 
corrections in Table 1.5.1.B 

The solar aes spectrum in the variant of using Table 1.5.1.B is presented in Fig. 7.2.1 
from which we can observe great differences from the one in Fig. 5.1 (reproduced in Fig. 
7.2.3), especially the appearance of numerous modulation formants around all important 
spectral components, formants resulting from the modulation with fm1. 

 
Fig. 7.2.1 aes spectrum for all planets based on the data in Table 1.5.1.B 

 
Fig. 7.2.2 aes spectrum for all planets based on the data in Table 1.5.1.B zoom1 

 
Fig. 7.2.3 aes spectrum for all planets without the data in Table 1.5.1.B zoom1 



If we compare the two spectra of Fig. 7.2.2 and 7.2.3 we will understand why we 
preferred to do the solar orbital analysis first without the data from Table 1.5.1.B. 

7.3 – The analysis of the table 1.5.1.B 
The mean anomaly of the planet i as a function of time t according to [1] is given by 

equation 7.1.1 which we can write: ( , ) 1( , ) 2( , )M i t M i t M i t= + , where 
1( , ) ( , ) ( , )M i t L i t i tϖ= −  is the mean anomaly without the data in Table B, and 

22( , ) cos( ) sin( )i i i i iM i t b t c f t s f t= ⋅ + ⋅ ⋅ + ⋅ ⋅  is the correction of the mean anomaly due to 
Table B. The graphs of the two components of the mean anomaly for the giant planets are 
given in the following figures: 

 
Fig. 7.3.1 Components of the mean anomaly for Jupiter 

 
Fig. 7.3.2 Components of the mean anomaly for Saturn 

 
Fig. 7.3.3 Components of the mean anomaly for Uranus 

 
Fig. 7.3.4 Components of the mean abnormality for Neptune 

The weights of the mean anomaly corrections for the giant planets resulting from Fig. 
7.3.1-7.3.4 are 0.03% for Jupiter, 0.18% for Saturn, 0.53% for Uranus and 0.72% for 
Neptune. 

Table 1.5.1.B therefore implements a periodic variation in the mean anomaly of the giant 
planets, a variation of the type ( ) ( )i it tα β+  where:  

• ( ) cos( 1 ) sin0.0606406 0.35635438 ( 1 )Ju t t tα ω ω= ⋅ ⋅ ⋅⋅ −  for Jupiter; 
• ( ) cos( 1 ) si0. n(13434469 0.87320147 1 )Sa t t tα ω ω= ⋅ + ⋅ ⋅− ⋅  for Saturn; 
• ( ) cos( 2 ) si0. n(97731848 0.17689245 2 )Ur t t tα ω ω= ⋅ + ⋅ ⋅− ⋅  for Uranus; 
• ( ) cos( 2 ) sin0.6834 ( 26318 0.101 )62547Ne t t tα ω ω= ⋅ ⋅ ⋅⋅ −  for Neptune, where: 
o ω1=38.35125  degrees/century;   T1=938.7 years;  fm1=3.37574e-011 Hz 
o ω2=7.67025  degrees/century;     T2=4693.5 years; fm2=6.75148e-012 Hz 

• 20.00012( 52) 4J tu tβ − ⋅= ;      
• 20.000258( 99) tSa tβ ⋅= ; 
• 20.000583( 31)Ur t tβ = ⋅ ; 
• 20.00041( 48) 3N te tβ − ⋅=      



We note that ω1=5ω2, T2=5T1. The result of the Kepler’s equation 
3

19
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⋅
 is a1=95.88 AU compared to 9.54 AU which is the Saturn’s 

orbit, and a2=280.35 AU compared to 30 AU which is the Neptune’s orbit. Also, 
fm1=33.75e-012 Hz would correspond to the orbital with n=5 (25=32), and fm2 to the orbital 
with n=3 (see [4]). 

Comment 7.3.1: In 2003, astronomers at the California Institute of Technology discovered the 
UB313 object, later called Eris15, estimated with a diameter of 3000 km, located at about 67 AU from the 
Sun and with a period of about 560 years. The objects that could produce the disturbances indicated 
above, judged by the amplitude of these disturbances on some giant planets can only be comparable in 
size with them. 

The components of the disturbance α for 60 centuries are given in Fig. 7.3.5, where some 
very interesting features are observed: 

1. The time dependence of the disturbances has an elliptical shape (eccentricity 
~0.99); 

2. The disturbances of the planets Jupiter and Saturn are similar, but those of Saturn 
are larger, as are those of Neptune and Uranus, but those of Neptune are larger; 

3. The ellipses describing the Ju&Sa disturbances have axes perpendicular to the 
axes of the Ur&Ne ellipses, i.e. they are independent of each other (this aspect together with 
the exact ratio of 1 to 5 of the frequencies give rise to serious suspicions regarding the 
artificial character of the data in Table 1.5.1.B); 

4. The size of the ellipses can be related to the distance from the source of the 
disturbance, in other words Jupiter is farther from the source of the disturbance than Saturn, 
just as Uranus is farther than Neptune; 

 
Fig. 7.3.5 Components of the disturbance α(t) 

The combined influences of disturbances α and β are presented in Fig. 7.3.6: 

 
Fig. 7.3.6 Components α(t) and β(t) for 60 centuries 
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All these findings inevitably lead us to some conclusions: 
1. Either table 1.5.1.B is an extremely elaborate farce meant to lead to fanciful 

assumptions the potential researcher using the data in the paper [1], in which case we should 
not take it into account (Indeed, if we do not take into account Table 1.5.1.B in the orbits of 
the giant planets no modulations appear, as we saw in par. 3); 

2. Either the corrections introduced by Table 1.5.1.B are correct, i.e. they help to 
establish more precisely the positions of the giant planets, in which case we must take into 
account the causes of such disturbances, i.e. the existence of two unknown planets that 
populates the orbitals with n=5 and n=3 (see [4]). 

3. In the case of the veracity of Table 1.5.1.B and the above conclusion, the silence 
in the media of the Jet Populsion Laboratory is somewhat understandable, because the clear 
proof of the existence of new giant planets in our solar system is a major discovery which 
must be proved by concrete astronomical observations. However, the major impediment in 
terms of verifying the existence of these planets is the distance they are at: 95 AU and 279 
AU respectively from Earth. 

4. As mentioned in comment 7.3.1, the amplitudes of the disturbances caused on the 
motion of some giant planets cannot be conceived as coming from some planetoids like Pluto 
or Eris, but also from planets comparable in size (maybe even bigger). 

8 - Analysis of the influence of solar acceleration on solar activity 

8.1 - Introduction 
The generic term solar activity currently includes many variables, some periodic 

(number of sunspots, solar constant, etc.), others aperiodic (plasma eruptions, variations of 
the solar wind, etc.). This paragraph refers to periodic events, especially the number of 
sunspots the periodic variation of which is called the solar cycle.  

Sunspots are depressions of the solar atmosphere (according to [8], the Wilson effect) 
with a temperature about 1500 K lower than the Sun’s temperature (which is why they appear 
to us black), with the central area called the umbra surrounded by a less dark area called the 
penumbra. The penumbra has a structure made of shiny fibres (fibriles) about 350-700 km 
wide and 1500-2800 km long directed obliquely towards the umbra. All sunspots have a 
magnetic field from 1800 to 4000 gauss depending on their size. The typical size of sunspots 
is about 10,000 km and lasts from a few days to a few months. 

Comment 8.1.1: Examining some physical phenomena that occur in planetary atmospheres or on 
the surface of the Sun and starting from the general observation that similar physical phenomena have 
similar causes16, we can see a similarity between the structure of a sunspot and the structure of cyclones 
in the Earth’s atmosphere, but especially in the atmosphere of Jupiter where they are ubiquitous. A 
cyclone shows a central area (the eye of the cyclone) without an apparent circulation, surrounded by an 
area with strong spiral circulation (the cyclone itself). The direction of rotation of the cyclone in the 
northern hemisphere is inverse to that in the southern hemisphere, the cyclonic movement occurring in 
areas with uneven latitude distribution of the speed of rotation of the atmosphere. As it is known, the Sun 
has an uneven latitude distribution of the axial rotation velocity, there being also the possibility of 
cyclones, so the objectual philosophy states that sunspots are cyclones on the surface of the Sun, the 
umbra being equivalent to the eye of the cyclone, and the penumbra being the equivalent of the area with 
spiral circulation of the cyclone. 

As we saw in [6], the acceleration of a material system (MS) is the effect of a kinetic 
energy input following the action of an energy flux on that MS. Also in [6] we saw that force 
is an energy flux transmitted through the real separation surface (RSS) of a MS, a flow 
distributed to the inner environment of this MS. In the case of the Sun, the force is the 

                                                 
16 Maxwell J.C. - Matter and Motion (1925) Ch.1.19 The general apothegm of physics: There is a maxim  

which is often  quoted, that "The same causes will always produce the same effects." or "That like causes 
produce like effects."  



gravitational force, produced by all the planets, a force17 which sets the Sun in motion in its 
orbital. 

If we talk about the motion of the Sun, we have seen so far that two types of solar 
acceleration have appeared:  

1. Orbital acceleration as a variation of the orbital velocity of the Sun, acceleration 
having the direction of the tangent to the solar trajectory; 

2. Radial acceleration as a variation of the radial velocity of the Sun, acceleration 
having the direction of the radius vector (of the solar position vector) with respect to CM. 

The two types of acceleration are mutually perpendicular, we could say that they are 
independent of each other. The fact that the orbital acceleration manifests along the solar 
trajectory, and the product between this acceleration and the solar mass gives us the force 
acting on the Sun, led to the conclusion that the motion on a closed trajectory can be related 
to a rotation of a vector field (Green theorem) which we will analyse in par. 8.2.1. 

Since the records of solar activity (in the form of the number of observed sunspots) have 
existed for only a few centuries, we have reduced the time interval of analysis from 60 
centuries (validity period of the ephemerides table) to the 1750-2030 interval, an interval 
comprising the 25 solar cycles in the records of astronomers, cycles the list of which is given 
in Table 8.2.2 (columns 1-3). 

8.2 – The analysis of solar orbital acceleration 
In Fig. 8.2.1 the solar aes parameter caused by all the planets18 is represented, in Fig. 

8.2.2 the same parameter, but caused only by the giant planets, and in Fig. 8.2.3 the 
parameter aes 0-7 from Fig. 8.2.1 filtered with the medsmooth function (aes_0-7,183), from 
which we can see that the telluric planets have a rather small contribution to the solar orbital 
acceleration19. 

 
Fig. 8.2.1 aes 0-7 

 
Fig. 8.2.2 aes 4-7 

 
Fig. 8.2.3 aes 0-7_sm 

The spectral analysis of the parameter aes 4-7 represented in Fig. 8.2.2 has the following 
spectrum as a result: 

                                                 
17 The force that moves the Sun around the CM is the unique resultant of all the gravitational forces of the 

planets that surround it. 
18 A much expanded fragment of the graph of Fig. 2.3.2 
19 The noise shown in Fig. 8.2.1 is precisely the contribution of the telluric planets to the solar aes. 



 
Fig. 8.2.4 aes 4-7 pg spectrum 

The components of the spectrum of Fig. 8.2.4 are given in Table 8.2.1, where in the last 
column includes the percentage error between the exact value of the component frequency 
(col. 5) and the value in col. 2. 

Table 8.2.1 
No.  Frequency 

 [Hz] 
Period 
[years] 

Amplitude Components Error 
[%] 

f01 1.5844e-09 19.999 1.6459e-04 fJu1-fSa1  (1.5950e-09) 0.665 
f02 2.6595e-09 11.915 1.6335e-04 fJu1           (2.6724e-09) 0.483 
f03 4.1874e-09 7.567 7.6567e-06 fJu2-fSa1  (4.2673e-09) 1.872 
f04 5.3191e-09 5.957 1.0448e-05 fJu2           (5.3447e-09) 0.479 
f05 6.9035e-09 4.59  

*20 
4.3627e-07 fJu3-fSa1  (6.9344e-09) 0.446 

f06 8.0352e-09 3.94 1.9511e-07 fJu3           (8.0118e-09) -0.292 
f07 9.5064e-09 3.33 9.9133e-09 fJu4-fSa1  (9.6066e-09) 1.043 
f08 1.0638e-08 2.98 2.0764e-08 fJu4           (1.0684e-08) 0.431 
From Table 8.2.1 we notice that the solar aes parameter is the “work” of only two giant 

planets - Jupiter and Saturn - the other giant planets Uranus and Neptune having (in the 
analysed time period) no contribution. Also, the amplitude of the first two components (f01, 
f02 with the periods T01=19,999 years and T02=11,915 years) is over 15 times higher than 
the amplitude of the next two (f03, f04 with the periods T03=7,567 years, T04=5,957 years) . 

If instead of the exact solar acceleration aes we calculate the mean acceleration ames 
with the equation: 

 ( ) ( )( ) ves t ves t tames t
Nd

− − ∆
=   (8.1) 

where ves(t) is the module of the solar orbital velocity, we will obtain the aes-ames 
comparative graph from Fig. 8.2.5.   

 
Fig. 8.2.5 Comparative graph aes 4-7-ames 4-7 

From graph 8.2.5 we notice that some details from the aes variation fade in the case of 
ames, but the maximum and minimum years of ames are closer (smaller gap) to the years of 
the cycles in their list (columns 2 and 3). 

List of years with ames minimums - 1766.5, 1787.9, 1809.2, 1824.6, 1847.5, 1869.5, 
1885.5, 1906.9, 1928.7, 1945.4, 1965.9, 1987.9, 2002.9, 2026.1. 

                                                 
20 The amplitude of the components f05 ... f08 is over 370 times smaller than f01, so it doesn't matter 

anymore. 



List of years with ames maximums - 1758.8, 1775, 1796.7, 1816.7, 1839.8, 1855.1, 
1877.8, 1894.6, 1914.9, 1937.2, 1954.1, 1974.9, 1995.6, 2018.6. 

 Table 8.2.2 
Cycle 
no. 

Minimum 
year 
list 

Maximum 
year 
list 

Minimum 
year 

aes 4-7 

Maximum 
year  

aes 4-7 

Max  
aes  
gap 

years 

Min. 
year 
ames 
4-7 

Max. 
year 
ames 
 4-7 

1 1755/02 1761/05 1755.3 1762.2 0.7  1758.8 
2 1766/06 1771/05 1769.3 1774.7 3.2 1766.5 1775 
3 1775/06 1778/01 1778.9 1785.2 7.1   
4 1784/09 1787/12 1792.1 1798.7 10.7 1787.9 1796.7 
5 1798/04 1805/11 1804.2 1808.6 2.7 1809.2 1816.7 
6 1810/08 1817/03 1814.6 1821.5 4.2   
7 1823/04 1830/04 1828.4 1833.7 3.3 1824.6  
8 1833/11 1837/01 1838.4 1844.5 7.4  1839.8 
9 1843/07 1849/01 1851.3 1857.9 8.8 1847.5 1855.1 

10 1855/12 1860/07 1863.5 1868.1 7.4   
11 1867/04 1870/05 1874.1 1881 10.5 1869.5 1877.8 
12 1878/12 1884/01 1887.8 1892.9 8.8 1885.5  
13 1890/01 1893/08 1897.4 1903.8 10  1894.6 
14 1901/12 1906/07 1910.9 1917.3 10.6 1906.9  
15 1913/06 1917/08 1922.6 1927.2 9.4  1914.9 
16 1923/09 1929/12 1933.4 1940.3 10.3 1928.7  
17 1933/10 1937/02 1947.2 1952.3 15.1  1937.2 
18 1944/02 1947/07 1956.8 1963.2 15.5 1945.4 1954.1 
19 1954/04 1957/10 1970.1 1976.7 18.9   
20 1964/10 1968/05 1981.7 1986.5 18 1965.9 1974.9 
21 1976/03 1979/01 1992.6 1999.6 20.5   
22 1986/07 1990/08 2006.4 2011.3 20.5 1987.9 1995.6 
23 1996/08 2000/07 2016.1 2022.6 22 2002.9  
24 2008/11  2029.5  20.5  2018.6 

Examining Figures 8.2.1 ... 8.2.3 and the data in Table 8.2.2 we can see a remarkable 
fact: the number of minimum and maximum values in the graphs of solar orbital acceleration 
is identical to the number of cycles of solar activity in Table 8.2.2. However, the dates (years) 
at which the respective events take place present an exaggeratedly large progressive gap 
(about 20 years in the last cycles), which cannot be explained yet. 

Comment 8.2.1.1: If we look at Fig. 8.2.1 we see that the aes amplitude due to the giant planets is 
preponderant and the amplitude of the telluric component (noise) is smaller, but without being negligible. 
Finally, between the relationships that model the aes_4-7, ames_4-7 and aes_0-3 values there is the 
relationship that models the cycles of sunspots closer to reality, a relationship that could allow the 
prediction of this phenomenon. 

8.2.1 The analysis of the influence of solar orbital acceleration on solar activity 
using Green’s theorem 

Two theorems are known in the calculation of vector fields: Green and Stokes, both 
defining a relationship between the circulation of a vector on a closed curve and the rotor 
(curl) of that vector on the surface delimited by the respective curve. In the case of the Green 
theorem the surface is flat, and in the case of Stokes the theorem is valid for any surface 
bounded by the closed curve. Because the solar motion21 takes place along a flat curve that 
includes a flat surface, it is enough to use the Green theorem. Let a vector be 

( , ) ( ) ( )F x y P x i Q y j= ⋅ + ⋅ , ( , ,i j k  being the unit vectors of the X,Y,Z axes) moving on a 
closed curve C, a curve bordering a flat surface R. 

Green’s theorem tells us that: 

                                                 
21 It is about the solar motion due to a certain planet. 
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or: 
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  (8.2.1.2) 

where dl dx i dy j= ⋅ + ⋅  and F curlF∇× =  is the rotor of vector F , dA being the area 
element of the surface R. 

In our case the vector i S esiF m a= ⋅  where Sm  it is the mass of the Sun, and esia  is the 
solar orbital acceleration in ecliptic coordinates caused by planet i, in other words iF  is the 
gravitational force exerted by planet i on the Sun. In the left member of equation 8.2.1.2 the 
product F dl⋅  represents the elementary mechanical work of gravitational force, and the 
integral on the C curve of this mechanical work means the energy transferred to the Sun over 
a period of time by planet i. This energy has a rotational component, a component that can 
influence both the orbital velocity of the Sun and its internal rotational motion (see par. 8.1).  

Let us return to the purpose of using the Green’s theorem, namely - the genesis of solar 
activity following the motions of the Sun caused by the motions of the planets around it. This 
is because the solar motion takes place along the plane elliptical trajectories, one for each 
planet, ellipses of known shape and size, the surface delimited by each ellipse i having the 
rotor (curl) of the force of attraction between the planets pi and the Sun distributed on it. The 
presence of a rotor (curl) field inside each solar trajectory is the reason for a possible 
rotational influence on the internal solar motions, motions that can stimulate the Sun’s own 
rotational motion (or part of it) and hence the number of cyclones on the solar surface 
(number of spots). Let's make some numerical estimates starting from the following data: 

Sun’s radius 56.9599 10SR = ⋅  km to which a solar equatorial area 121.5218 10SS = ⋅  km2 
corresponds. The area of the solar orbit caused by the planet i is i i iS a bπ= , and the ratio 
between the area of the solar orbit and the solar area is ki = Si / SS. 

Table 8.2.1.1 
i Planet ai  

[km] 
bi  

[km] 
Si  

[km2] 
ki  aesmi 

[m/s2] 
Pmedi 
[J/s ; W] 

1 Mercury 9.614 9.408 284.152 3.94*10-11 7.395*10-9 1.155*1020 
2 Venus 264.874 264.868 2.204*105 1.448*10-7 2.774*10-8 4.730*1021 
3 Earth 456.028 455.476 6.525*105 4.288*10-7  1.804*10-8 3.256*1021 
4 Mars 73.561 73.240 16925.67 1.112*10-8 8.459*10-10 1.307*1019 
5 Jupiter 7.431*105 7.422*105 1.733*1012  1.139 2.108*10-7 5.227*1024 
6 Saturn 2.225*105 2.221*105 1.552*1011 0.102 1.929*10-8 5.622*1022 
7 Uranus 1.255*105 1.254*105 4.944*1010 0.0325 7.098*10-10 4.196*1020 
8 Neptune 2.329*105 2.329*105 1.704*1011 0.112 3.399*10-10 1.904*1020 

Column 7 of Table 8.2.1.1 contains the values of the mean solar ecliptic acceleration 
expressed in m/s2 produced by planet i, and in column 8 we find the intensity of the energy 
flux transmitted to the Sun by planet i (an intensity equivalent to the mean power Pmed). 

Comment 8.2.1.1: If we know the mean solar ecliptic acceleration caused by the planet i aesmi 
then we can calculate the mean force Fmedi = mS*aesmi, (where mS is the mass of the Sun), and the 
product between this force and the length of the solar elliptical trajectory due to the planet i (Li) gives us 
the mechanical work Wi = Fmedi*Li, i.e. the energy transferred to the Sun during a period by that planet. 
The ratio between that energy and the length of the period Ti gives us the mean power Pmedi. 

Solar ecliptic acceleration due to Jupiter aesJu = 1.4223... 1.7251 km/day2 gives us an 
average value of 2.108*10-7 m/s2, 11 times higher than that produced by Saturn. The fact that 
the area of the ellipse bordered by the solar trajectory produced by Jupiter is larger than the 
equatorial solar area means that the rotor (curl) of the Sun-Jupiter attraction force is 



distributed over an area that includes both the solar interior and the solar atmosphere (it lays 
for another 4.666*104 km outside the Sun). 

The area of the solar orbit due to Neptune is S7=1.7041*1011 km2 (11.2% from the solar 
area), but the solar orbital acceleration produced is very small (aesNe = 0.00249... 0.00258 
km/day2), 60 times smaller than that produced by Saturn. 

The result of these estimates proves that the possible influence of the planets on solar 
activity is largely given by the planets Jupiter and Saturn, but mainly by Jupiter. 

8.3 – The analysis of solar radial acceleration 
For the analysis of the solar radial acceleration, we will restrict the analysis interval of 

the solar distance distributions from the CM to the period 1590-2050, thus including both the 
period of known solar cycles and the interval known as “Maunder minimum” (1645 - 1715) 
in which an absence (or a small number) of sunspots is mentioned. In Fig. 8.3.1 we have the 
distribution of the solar distance relative to CM, in Fig. 8.3.2 the radial velocity distribution 
and in Fig. 8.3.3 the solar radial acceleration. 

 
Fig. 8.3.1 res(t) 1590-2050 log 

 
Fig. 8.3.2 vres(t) 1590-2050 

 
Fig. 8.3.3 ares(t) 1590-2050 log 

We saw it in par. 2.4 where we analysed the distributions of the solar distance from the 
CM that the ares(t) parameter (solar radial acceleration in ecliptic coordinates, see Fig. 2.4.3) 
has an extremely uneven time distribution, having at certain moments very high values. 

From Fig. 8.3.3 (an expansion of Fig. 2.4.3) we notice that the radial acceleration has 
some peaks grouped three by three (triplets), of which the central one is larger. The time 
distance between the central peaks is 178.8 years (period called the “José cycle” in [7]), and 
between the peaks of a triplet 39 years. The highest peak of ares(t) from the year 1632.6 with 
amplitude 50 could mark the beginning of the Maunder interval, based on the assumption that 
radial acceleration seems to inhibit periodic solar activity and not to stimulate it. 

Comment 8.3.1: The mean value of the peak of the solar radial acceleration of 50 km/day2 is only 
14.923 km/day2 if we calculate the mean acceleration as Δv/Δt, where Δv and Δt are established on the 
basis of the expanded graph in Fig. 8.3.2. We will convert the acceleration values from km/day to m/s: 1 
km/day=0.01157 m/s, 1 km/day2=1.33959e-07 m/s2. To an acceleration of 14.923 km/day2 another of 
1.999e-06 m/s2 corresponds. Given that the mass of the Sun is 1.9891e30, the result is a force (F=ma) of 
3.978e24 N, i.e. an energy flow of 3.978e24 J/s provided to the solar inner environment, an aperiodic flux 



that cannot influence the periodic processes22 within the so-called "solar activity", but can disrupt them. 
However, it is possible that certain aperiodic events of solar activity (explosions, abnormal plasma 
emissions, etc.) are caused by the particularly high energy input of these acceleration peaks. 

9 - Conclusions 
1. The motion of a AB in the planetary system (including the Sun) is influenced by 

the motion of outer ABs. One of the most unexpected consequences of this observation is the 
influence of the Earth on Mercury’s motion (see Table 3.8.1), in addition to the influence of 
the giant planets; 

2. In [5] due to the fact that the modelling of planetary motions was purely 
theoretical (without a real time support) the importance of solar radial acceleration in periodic 
solar activity was much overestimated. In the present study in which the real-time motion of 
the planets according to the ephemerides tables is analysed, the essential influence on the 
periodic solar activity of the solar orbital acceleration and the much reduced influence of the 
radial acceleration could be found; 

3. From the tables with planetary orbital frequencies some interesting details are 
observed: 

• fSa0-fUr0 = 6.9855E-10 Hz (frequency to which a period T=16568.71 days 
corresponds, error 1.13% compared to 214 days); 

• fSa0-fNe0 = 8.834395E-10 Hz (T=13101.15 days, error -0.046% compared 
to 217/10) days. 

It should be noted that these are natural planetary frequencies (inverse of periods) and 
not spectral components, the result of which is other relationships involving powers of 2 
compared to the relationships discussed in [4]; 

4. The analysis of the solar orbital acceleration caused by the gravitational forces of 
the planets surrounding the Sun showed (see Table 8.2.1.1) that the mean gravitational power 
received by the Sun from all the planets is 5.292*1024 J/s, of which 98.77% from Jupiter, 
1.06% from Saturn, 0.09% from Venus, 0.06% from Earth and cumulated under 0,01% from 
the other planets, this being the proportion in which the planets in the solar system can 
influence the periodic solar activity. 

5. The analysis of the solar radial acceleration in the interval 1590-2050 did not 
show any effect on the periodic solar activity, except for the possible suppression of this 
activity in the interval known as “Maunder minimum” (1645 - 1715) following a massive 
pulse of ares from 1632 (equivalent to an energy input of 3.978*1024 J/s, see comment 8.3.1). 
However, the massive energy input provided to the entire solar structure by radial 
acceleration pulses can influence the processes inside the Sun, an influence that manifests 
itself on the outside in the form of plasma eruptions or variations in the solar wind.  

                                                 
22 A periodic process can also be influenced by a periodic intervention (interaction), either constructive 

(synphasic) or destructive (antiphasic). 
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